Advertisement

Strahlentherapie und Onkologie

, Volume 194, Issue 8, pp 719–726 | Cite as

Voxel-wise correlation of functional imaging parameters in HNSCC patients receiving PET/MRI in an irradiation setup

  • Kerstin Zwirner
  • Daniela Thorwarth
  • René M. Winter
  • Stefan Welz
  • Jakob Weiss
  • Nina F. Schwenzer
  • Holger Schmidt
  • Christian la Fougère
  • Konstantin Nikolaou
  • Daniel Zips
  • Sergios Gatidis
Original Article

Abstract

Purpose

The purpose of this study was to demonstrate the feasibility of voxel-wise multiparametric characterization of head and neck squamous cell carcinomas (HNSCC) using hybrid multiparametric magnetic resonance imaging and positron emission tomography with [18F]-fluorodesoxyglucose (FDG-PET/MRI) in a radiation treatment planning setup.

Methods

Ten patients with locally advanced HNSCC were examined with a combined FDG-PET/MRI in an irradiation planning setup. The multiparametric imaging protocol consisted of FDG-PET, T2-weighted transverse short tau inversion recovery sequence (STIR) and diffusion-weighted MRI (DWI). Primary tumours were manually segmented and quantitative imaging parameters were extracted. PET standardized uptake values (SUV) and DWI apparent diffusion coefficients (ADC) were correlated on a voxel-wise level.

Results

Images acquired in this specialised radiotherapy planning setup achieved good diagnostic quality. Median tumour volume was 4.9 [1.1–42.1] ml. Mean PET SUV and ADC of the primary tumours were 5 ± 2.5 and 1.2 ± 0.3 10−3 mm2/s, respectively. In voxel-wise correlation between ADC values and corresponding FDG SUV of the tumours, a significant negative correlation was observed (r = −0.31 ± 0.27, p < 0.05).

Conclusion

Multiparametric voxel-wise characterization of HNSCC is feasible using combined PET/MRI in a radiation planning setup. This technique may provide novel insights into tumour biology with regard to radiation therapy in the future.

Keywords

Magnetic Resonance Imaging Multimodal Imaging Positron-Emission Tomography Radiotherapy Head and Neck Neoplasms 

Voxelweise Korrelation funktioneller PET/MRT-Parameter in Bestrahlungslagerung bei Patienten mit Kopf-Hals-Tumoren

Zusammenfassung

Hintergrund

Ziel der Studie war es, die Realisierbarkeit einer voxelweisen multiparametrischen Charakterisierung von Kopf-Hals-Tumoren mittels kombinierter Magnetresonanztomographie und Positronen-Emissions-Tomographie mit [18F]-Fluordesoxyglukose (FDG-PET/MRT) in Bestrahlungsposition zu untersuchen.

Methoden

Zehn Patienten mit lokal fortgeschrittenen Kopf-Hals-Tumoren wurden mittels FDG-PET/MRT in Bestrahlungslagerung untersucht. Das multiparametrische Bildgebungsprotokoll beinhaltete FDG-PET, eine transversale T2-gewichtete STIR-Sequenz („short tau inversion recovery“) sowie eine verzerrungsoptimierte Diffusionsbildgebung (DWI). Die Primärtumoren wurden zunächst manuell segmentiert. Anschließend wurden die quantitativen Bildgebungsparameter extrahiert. PET-SUV (standardized uptake values) und DWI-ADC (apparent diffusion coefficients) wurden voxelweise korreliert.

Ergebnisse

Die Bildgebung, die in diesem speziellen radioonkologischen Setup erhoben wurde, erreichte gute diagnostische Qualität. Das mediane Tumorvolumen betrug 4,9 ml (Spanne 1,1–42,1 ml). Die jeweiligen durchschnittlichen PET-SUV- und ADC-Werte der Primärtumoren ergaben 5 ± 2,5 und 1,2 ± 0,3 103 mm2/s. Die voxelweise Korrelation zwischen ADC-Werten und den dazugehörigen PET-SUVs der Tumoren zeigte eine signifikante negative Korrelation (r = −0,31 ± 0,27; p < 0,05).

Schlussfolgerung

Multiparametrische voxelweise Charakterisierungen von Kopf-Hals-Tumoren mittels kombiniertem PET/MRT sind in der Bestrahlungslagerung realisierbar. Diese Technik könnte zukünftig neuartige Einblicke in die Tumorbiologie im Hinblick auf die Strahlentherapie ermöglichen.

Schlagworte

Magnetresonanztomographie Multiparametrische Bildgebung Positronen-Emissions-Tomographie Strahlentherapie Kopf-Hals Tumore 

Notes

Funding

We would like to thank the “Zentrum für Personalisierte Medizin (ZPM)” Tübingen/Germany for funding this project. Kerstin Zwirner is supported by the Fortüne/PATE Program of the Medical Faculty, Eberhard Karls University Tübingen (funding number: 2447-0-0).

Compliance with ethical guidelines

Conflict of interest

D. Zips has received research grants from Elekta and Siemens. K. Zwirner, D. Thorwarth, R. M. Winter, S. Welz, J. Weiss, N. F. Schwenzer, H. Schmidt, C. la Fougère, K. Nikolaou and S. Gatidis declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Peeken JC, Nusslin F, Combs SE (2017) “Radio-oncomics”: the potential of radiomics in radiation oncology. Strahlenther Onkol 193(10):767–779.  https://doi.org/10.1007/s00066-017-1175-0 CrossRefPubMedGoogle Scholar
  2. 2.
    Boss A, Stegger L, Bisdas S, Kolb A, Schwenzer N, Pfister M, Claussen CD, Pichler BJ, Pfannenberg C (2011) Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol 21(7):1439–1446.  https://doi.org/10.1007/s00330-011-2072-z CrossRefPubMedGoogle Scholar
  3. 3.
    Wippold FJ 2nd (2007) Head and neck imaging: the role of CT and MRI. J Magn Reson Imaging 25(3):453–465.  https://doi.org/10.1002/jmri.20838 CrossRefPubMedGoogle Scholar
  4. 4.
    Combs SE, Nusslin F, Wilkens JJ (2016) Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlenther Onkol 192(4):209–215.  https://doi.org/10.1007/s00066-016-0944-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Becker M, Zaidi H (2014) Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI. Br J Radiol 87(1036):20130677.  https://doi.org/10.1259/bjr.20130677 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vandecaveye V, De Keyzer F, Dirix P, Lambrecht M, Nuyts S, Hermans R (2010) Applications of diffusion-weighted magnetic resonance imaging in head and neck squamous cell carcinoma. Neuroradiology 52(9):773–784.  https://doi.org/10.1007/s00234-010-0743-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Thoeny HC, De Keyzer F, King AD (2012) Diffusion-weighted MR imaging in the head and neck. Radiology 263(1):19–32.  https://doi.org/10.1148/radiol.11101821 CrossRefPubMedGoogle Scholar
  8. 8.
    Ng SH, Yen TC, Liao CT, Chang JT, Chan SC, Ko SF, Wang HM, Wong HF (2005) 18 F-FDG PET and CT/MRI in oral cavity squamous cell carcinoma: a prospective study of 124 patients with histologic correlation. J Nucl Med 46(7):1136–1143PubMedGoogle Scholar
  9. 9.
    Baek CH, Chung MK, Son YI, Choi JY, Kim HJ, Yim YJ, Ko YH, Choi J, Cho JK, Jeong HS (2008) Tumor volume assessment by 18 F-FDG PET/CT in patients with oral cavity cancer with dental artifacts on CT or MR images. J Nucl Med 49(9):1422–1428.  https://doi.org/10.2967/jnumed.108.051649 CrossRefPubMedGoogle Scholar
  10. 10.
    Al-Ibraheem A, Buck A, Krause BJ, Scheidhauer K, Schwaiger M (2009) Clinical applications of FDG PET and PET/CT in head and neck cancer. J Oncol.  https://doi.org/10.1155/2009/208725 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gallamini A, Zwarthoed C, Borra A (2014) Positron Emission Tomography (PET) in oncology. Cancers (Basel) 6(4):1821–1889.  https://doi.org/10.3390/cancers6041821 CrossRefGoogle Scholar
  12. 12.
    Werner MK, Schmidt H, Schwenzer NF (2012) MR/PET: a new challenge in hybrid imaging. AJR Am J Roentgenol 199(2):272–277.  https://doi.org/10.2214/AJR.12.8724 CrossRefPubMedGoogle Scholar
  13. 13.
    Bhatnagar P, Subesinghe M, Patel C, Prestwich R, Scarsbrook AF (2013) Functional imaging for radiation treatment planning, response assessment, and adaptive therapy in head and neck cancer. Radiographics 33(7):1909–1929.  https://doi.org/10.1148/rg.337125163 CrossRefPubMedGoogle Scholar
  14. 14.
    Paulus DH, Thorwath D, Schmidt H, Quick HH (2014) Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning. Med Phys 41(7):72505.  https://doi.org/10.1118/1.4881317 CrossRefPubMedGoogle Scholar
  15. 15.
    Winter RM, Schmidt H, Leibfarth S, Zwirner K, Welz S, Schwenzer NF, la Fougere C, Nikolaou K, Gatidis S, Zips D, Thorwarth D (2017) Distortion correction of diffusion-weighted magnetic resonance imaging of the head and neck in radiotherapy position. Acta Oncol 56(11):1659–1663.  https://doi.org/10.1080/0284186X.2017.1377347 CrossRefPubMedGoogle Scholar
  16. 16.
    Varoquaux A, Rager O, Lovblad KO, Masterson K, Dulguerov P, Ratib O, Becker CD, Becker M (2013) Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV. Eur J Nucl Med Mol Imaging 40(6):842–852.  https://doi.org/10.1007/s00259-013-2351-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Minn H, Clavo AC, Grenman R, Wahl RL (1995) In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L‑methionine in squamous-cell carcinoma of the head and neck. J Nucl Med 36(2):252–258PubMedGoogle Scholar
  18. 18.
    Surov A, Stumpp P, Meyer HJ, Gawlitza M, Hohn AK, Boehm A, Sabri O, Kahn T, Purz S (2016) Simultaneous (18)F-FDG-PET/MRI: associations between diffusion, glucose metabolism and histopathological parameters in patients with head and neck squamous cell carcinoma. Oral Oncol 58:14–20.  https://doi.org/10.1016/j.oraloncology.2016.04.009 CrossRefPubMedGoogle Scholar
  19. 19.
    Fruehwald-Pallamar J, Czerny C, Mayerhoefer ME, Halpern BS, Eder-Czembirek C, Brunner M, Schuetz M, Weber M, Fruehwald L, Herneth AM (2011) Functional imaging in head and neck squamous cell carcinoma: correlation of PET/CT and diffusion-weighted imaging at 3 T. Eur J Nucl Med Mol Imaging 38(6):1009–1019.  https://doi.org/10.1007/s00259-010-1718-4 CrossRefPubMedGoogle Scholar
  20. 20.
    Choi SH, Paeng JC, Sohn CH, Pagsisihan JR, Kim YJ, Kim KG, Jang JY, Yun TJ, Kim JH, Han MH, Chang KH (2011) Correlation of 18 F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion MRI in head and neck cancer. J Nucl Med 52(7):1056–1062.  https://doi.org/10.2967/jnumed.111.089334 CrossRefPubMedGoogle Scholar
  21. 21.
    Nakajo M, Nakajo M, Kajiya Y, Tani A, Kamiyama T, Yonekura R, Fukukura Y, Matsuzaki T, Nishimoto K, Nomoto M, Koriyama C (2012) FDG PET/CT and diffusion-weighted imaging of head and neck squamous cell carcinoma: comparison of prognostic significance between primary tumor standardized uptake value and apparent diffusion coefficient. Clin Nucl Med 37(5):475–480.  https://doi.org/10.1097/RLU.0b013e318248524a CrossRefPubMedGoogle Scholar
  22. 22.
    Gawlitza M, Purz S, Kubiessa K, Boehm A, Barthel H, Kluge R, Kahn T, Sabri O, Stumpp P (2015) In vivo correlation of glucose metabolism, cell density and microcirculatory parameters in patients with head and neck cancer: initial results using simultaneous PET/MRI. PLoS ONE 10(8):e134749.  https://doi.org/10.1371/journal.pone.0134749 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rasmussen JH, Norgaard M, Hansen AE, Vogelius IR, Aznar MC, Johannesen HH, Costa J, Engberg AM, Kjaer A, Specht L, Fischer BM (2017) Feasibility of multiparametric imaging with PET/MR in head and neck squamous cell carcinoma. J Nucl Med 58(1):69–74.  https://doi.org/10.2967/jnumed.116.180091 CrossRefPubMedGoogle Scholar
  24. 24.
    Leibfarth S, Simoncic U, Monnich D, Welz S, Schmidt H, Schwenzer N, Zips D, Thorwarth D (2016) Analysis of pairwise correlations in multi-parametric PET/MR data for biological tumor characterization and treatment individualization strategies. Eur J Nucl Med Mol Imaging 43(7):1199–1208.  https://doi.org/10.1007/s00259-016-3307-7 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Houweling AC, Wolf AL, Vogel WV, Hamming-Vrieze O, van Vliet-Vroegindeweij C, van de Kamer JB, van der Heide UA (2013) FDG-PET and diffusion-weighted MRI in head-and-neck cancer patients: implications for dose painting. Radiother Oncol 106(2):250–254.  https://doi.org/10.1016/j.radonc.2013.01.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Aramburu Nunez D, Lopez Medina A, Mera Iglesias M, Gomez SF, Dave A, Hatzoglou V, Paudyal R, Calzado A, Deasy JO, Shukla-Dave A, Munoz VM (2017) Multimodality functional imaging using DW-MRI and 18 F-FDG-PET/CT during radiation therapy for human papillomavirus negative head and neck squamous cell carcinoma: Meixoeiro Hospital of Vigo Experience. World J Radiol 9(1):17–26.  https://doi.org/10.4329/wjr.v9.i1.17 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schmidt H, Brendle C, Schraml C, Martirosian P, Bezrukov I, Hetzel J, Muller M, Sauter A, Claussen CD, Pfannenberg C, Schwenzer NF (2013) Correlation of simultaneously acquired diffusion-weighted imaging and 2‑deoxy-[18 F] fluoro-2-D-glucose positron emission tomography of pulmonary lesions in a dedicated whole-body magnetic resonance/positron emission tomography system. Invest Radiol 48(5):247–255.  https://doi.org/10.1097/RLI.0b013e31828d56a1 CrossRefPubMedGoogle Scholar
  28. 28.
    Gatidis S, Graf H, Weiss J, Stemmer A, Kiefer B, Nikolaou K, Notohamiprodjo M, Martirosian P (2017) Diffusion-weighted echo planar MR imaging of the neck at 3 T using integrated shimming: comparison of MR sequence techniques for reducing artifacts caused by magnetic-field inhomogeneities. MAGMA 30(1):57–63.  https://doi.org/10.1007/s10334-016-0582-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kerstin Zwirner
    • 1
  • Daniela Thorwarth
    • 2
    • 3
  • René M. Winter
    • 2
  • Stefan Welz
    • 1
    • 3
  • Jakob Weiss
    • 4
  • Nina F. Schwenzer
    • 4
  • Holger Schmidt
    • 4
  • Christian la Fougère
    • 3
    • 5
  • Konstantin Nikolaou
    • 3
    • 4
  • Daniel Zips
    • 1
    • 3
  • Sergios Gatidis
    • 4
  1. 1.Department of Radiation Oncology, Medical Faculty and University HospitalEberhard Karls University TübingenTübingenGermany
  2. 2.Section for Biomedical Physics, Department of Radiation Oncology, Medical Faculty and University HospitalEberhard Karls University TübingenTübingenGermany
  3. 3.German Cancer Research Center (DKFZ) partner site TübingenGerman Cancer Consortium (DKTK)TübingenGermany
  4. 4.Department of Diagnostic and Interventional Radiology, Medical Faculty and University HospitalEberhard Karls University TübingenTübingenGermany
  5. 5.Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Medical Faculty and University HospitalEberhard Karls University TübingenTübingenGermany

Personalised recommendations