Skip to main content

Advertisement

Log in

Prospective feasibility analysis of a novel off-line approach for MR-guided radiotherapy

Prospektive Machbarkeitsstudie eines neuen Offline-Ansatzes für die MR-geführte Radiotherapie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

The present work aimed to analyze the feasibility of a shuttle-based MRI-guided radiation therapy (MRgRT) in the treatment of pelvic malignancies.

Patients and methods

20 patients with pelvic malignancies were included in this prospective feasibility analysis. Patients underwent daily MRI in treatment position prior to radiotherapy at the German Cancer Research Center. Positional inaccuracies, time and patient compliance were assessed for the application of off-line MRgRT.

Results

In 78% of applied radiation fractions, MR imaging for position verification could be performed without problems. Additionally, treatment-related side effects and reduced patient compliance were only responsible for omission of MRI in 9% of radiation fractions. The study workflow took a median time of 61 min (range 47–99 min); duration for radiotherapy alone was 13 min (range 7–26 min). Patient positioning, MR imaging and CT imaging including patient repositioning and the shuttle transfer required median times of 10 min (range 7–14 min), 26 min (range 15–60 min), 5 min (range 3–8 min) and 8 min (range 2–36 min), respectively.

To assess feasibility of shuttle-based MRgRT, the reference point coordinates for the x, y and z axis were determined for the MR images and CT obtained prior to the first treatment fraction and correlated with the coordinates of the planning CT. In our dataset, the median positional difference between MR imaging and CT-based imaging based on fiducial matching between MR and CT imaging was equal to or less than 2 mm in all spatial directions. The limited space in the MR scanner influenced patient selection, as the bore of the scanner had to accommodate the immobilization device and the constructed stereotactic frame. Therefore, obese, extremely muscular or very tall patients could not be included in this trial in addition to patients for whom exposure to MRI was generally judged inappropriate.

Conclusion

This trial demonstrated for the first time the feasibility and patient compliance of a shuttle-based off-line approach to MRgRT of pelvic malignancies.

Zusammenfassung

Hintergrund

Diese Arbeit analysiert die Machbarkeit einer MR-geführten Radiotherapie (MRgRT) im Beckenbereich mittels Shuttlesystem.

Patienten und Methoden

20 Patienten mit Tumorerkrankungen im Beckenbereich wurden in diese prospektive Machbarkeitsstudie eingeschlossen. Alle Patienten erhielten am Deutschen Krebsforschungszentrum Heidelberg jeweils vor Bestrahlung eine tägliche MRT-Bildgebung in Behandlungsposition. Lageungenauigkeiten, Zeitaufwand und Patientenakzeptanz dieses Offline-MRgRT-Ansatzes wurden erfasst.

Ergebnisse

Bei insgesamt 78 % der Bestrahlungsfraktionen konnte eine MRT-Bildgebung zur Lageverifikation der Patienten problemlos durchgeführt werden. Nur bei 9 % der Bestrahlungsfraktionen führten behandlungsbedingte Nebenwirkungen und eingeschränkte Patientenakzeptanz zum Ausfall der MRT-Scans. Der Zeitaufwand für diesen Offline-MRgRT-Ansatz betrug im Median 61 min (Spanne 47–99 min), davon 13 min für die Bestrahlung (Spanne 7–26 min). Patientenlagerung, MRT-Bildgebung, Cone-Beam-CT-Bildgebung und Transfer beanspruchten nacheinander im Median 10 min (Spanne 7–14 min), 26 min (Spanne 15–60 min), 5 min (Spanne 3–8 min) und 8 min (Spanne 2–36 min). Um die Anwendbarkeit der shuttlebasierten MRgRT zu überprüfen, wurden die Koordinaten des Referenzpunkts auf der MRT- und CT-Bildgebung zu Beginn der Radiotherapie erfasst und mit den Koordinaten der Planungs-CT korreliert. In dieser Studie war die nach Korrelation der Positionsmarker gemessene mediane Lageabweichung zwischen MRT- und Cone-Beam-CT-Bildgebung in allen Raumrichtungen maximal 2 mm. Die Platzvorgaben des MRT-Scanners beeinflussten in dieser Studie die Patientenauswahl dadurch, dass die „Gantry“ sowohl die Immobilisationshilfe als auch den stereotaktischen Rahmen fassen musste. Dadurch konnten adipöse, sehr muskulöse oder sehr große Patienten sowie Patienten mit Kontraindikationen für eine MRT-Untersuchung nicht in diese Studie eingeschlossen werden.

Schlussfolgerung

Diese Studie zeigte zum ersten Mal die Machbarkeit und Patientenakzeptanz eines shuttlebasierten Offline-Konzepts für die MRgRT pelviner Tumore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guerrero Urbano MT, Nutting CM (2004) Clinical use of intensity-modulated radiotherapy: part II. Br J Radiol 77(915):177–182

    Article  CAS  PubMed  Google Scholar 

  2. Guckenberger M, Andratschke N, Alheit H, Holy R, Moustakis C, Nestle U, Sauer O, Deutsche Gesellschaft fur Radioonkologie (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33

    Article  CAS  PubMed  Google Scholar 

  3. Schulz-Ertner D, Tsujii H (2007) Particle radiation therapy using proton and heavier ion beams. J Clin Oncol 25(8):953–964

    Article  PubMed  Google Scholar 

  4. Dawson LA, Jaffray DA (2007) Advances in image-guided radiation therapy. J Clin Oncol 25(8):938–946

    Article  PubMed  Google Scholar 

  5. Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 7(10):848–858

    Article  PubMed  Google Scholar 

  6. Antonuk LE, Boudry J, Huang W, McShan DL, Morton EJ, Yorkston J, Longo MJ, Street RA (1992) Demonstration of megavoltage and diagnostic x‑ray imaging with hydrogenated amorphous silicon arrays. Med Phys 19(6):1455–1466

    Article  CAS  PubMed  Google Scholar 

  7. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53(5):1337–1349

    Article  PubMed  Google Scholar 

  8. Rasch C, Steenbakkers R, van Herk M (2005) Target definition in prostate, head, and neck. Semin Radiat Oncol 15(3):136–145

    Article  PubMed  Google Scholar 

  9. Fiorentino A, Caivano R, Pedicini P, Fusco V (2013) Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomography. Clin Transl Oncol 15(9):754–758

    Article  CAS  PubMed  Google Scholar 

  10. Thorwarth D (2015) Functional imaging for radiotherapy treatment planning: current status and future directions—a review. Br J Radiol 88(1051):20150056. https://doi.org/10.1259/bjr.20150056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tsien C, Cao Y, Chenevert T (2014) Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 24(3):218–226

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lupo JM, Nelson SJ (2014) Advanced magnetic resonance imaging methods for planning and monitoring radiation therapy in patients with high-grade glioma. Semin Radiat Oncol 24(4):248–258

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dirix P, Haustermans K, Vandecaveye V (2014) The value of magnetic resonance imaging for radiotherapy planning. Semin Radiat Oncol 24(3):151–159

    Article  PubMed  Google Scholar 

  14. Kerkhof EM, Raaymakers BW, van der Heide UA, van de Bunt L, Jurgenliemk-Schulz IM, Lagendijk JJ (2008) Online MRI guidance for healthy tissue sparing in patients with cervical cancer: an IMRT planning study. Radiother Oncol 88(2):241–249

    Article  PubMed  Google Scholar 

  15. Chen L, Price RA Jr., Wang L, Li J, Qin L, McNeeley S, Ma CM, Freedman GM, Pollack A (2004) MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys 60(2):636–647

    Article  PubMed  Google Scholar 

  16. Beavis AW, Gibbs P, Dealey RA, Whitton VJ (1998) Radiotherapy treatment planning of brain tumours using MRI alone. Br J Radiol 71(845):544–548

    Article  CAS  PubMed  Google Scholar 

  17. Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199

    Article  PubMed  Google Scholar 

  18. Raaymakers BW, Lagendijk JJ, Overweg J, Kok JG, Raaijmakers AJ, Kerkhof EM, van der Put RW, Meijsing I, Crijns SP, Benedosso F et al (2009) Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 54(12):N229–N237

    Article  CAS  PubMed  Google Scholar 

  19. Karlsson M, Karlsson MG, Nyholm T, Amies C, Zackrisson B (2009) Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys 74(2):644–651

    Article  PubMed  Google Scholar 

  20. Jaffray DA, Carlone MC, Milosevic MF, Breen SL, Stanescu T, Rink A, Alasti H, Simeonov A, Sweitzer MC, Winter JD (2014) A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol 24(3):193–195

    Article  PubMed  Google Scholar 

  21. Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Haring P, Debus J, Sterzing F (2014) MR-guidance—a clinical study to evaluate a shuttle- based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 9:12

    Article  PubMed Central  PubMed  Google Scholar 

  22. Noel CE, Parikh PJ, Spencer CR, Green OL, Hu Y, Mutic S, Olsen JR (2015) Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol 54(9):1474–1482

    Article  PubMed  Google Scholar 

  23. Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, Green O, Wooten O, Li HH, Hu Y et al (2016) Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. Int J Radiat Oncol Biol Phys 94(2):394–403

    Article  PubMed  Google Scholar 

  24. Nyholm T, Nyberg M, Karlsson MG, Karlsson M (2009) Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. Radiat Oncol 4:54

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hardemark B, van Vulpen M, van der Heide UA (2008) MRI/linac integration. Radiother Oncol 86(1):25–29

    Article  PubMed  Google Scholar 

  26. Constantin DE, Fahrig R, Keall PJ (2011) A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators. Med Phys 38(7):4174–4185

    Article  PubMed Central  PubMed  Google Scholar 

  27. Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, Blosser E, Tymofichuk D (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36(6):2084–2088

    Article  CAS  PubMed  Google Scholar 

  28. Kron T, Eyles D, John SL, Battista J (2006) Magnetic resonance imaging for adaptive cobalt tomotherapy: a proposal. J Med Phys 31(4):242–254

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ghilezan MJ, Jaffray DA, Siewerdsen JH, Van Herk M, Shetty A, Sharpe MB, Zafar Jafri S, Vicini FA, Matter RC, Brabbins DS et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62(2):406–417

    Article  PubMed  Google Scholar 

  30. Kotte AN, Hofman P, Lagendijk JJ, van Vulpen M, van der Heide UA (2007) Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 69(2):419–425

    Article  PubMed  Google Scholar 

  31. Roberson PL, McLaughlin PW, Narayana V, Troyer S, Hixson GV, Kessler ML (2005) Use and uncertainties of mutual information for computed tomography/ magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys 32(2):473–482

    Article  PubMed  Google Scholar 

  32. Fransson A, Andreo P, Potter R (2001) Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol 177(2):59–73

    Article  CAS  PubMed  Google Scholar 

  33. Karger CP, Hoss A, Bendl R, Canda V, Schad L (2006) Accuracy of device-specific 2D and 3D image distortion correction algorithms for magnetic resonance imaging of the head provided by a manufacturer. Phys Med Biol 51(12):N253–N261

    Article  PubMed  Google Scholar 

  34. Rudra S, Jiang N, Rosenberg SA, Olsen JR, Parikh PJ, Bassetti MF, Lee P (2017) High dose adaptive MRI guided radiation therapy improves overall survival of inoperable pancreatic cancer. Int J Radiat Oncol Biol Phys 99(2, Suppl.):E184

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the help of Rolf Bendl and Paul Mercea regarding the development of the hardware required for this trial. We also thank Annette Miltner, Marion Bachmann, Elisabeth Rittinghausen, Armin Runz and René Hertel for their excellent technical support.

Funding

This project was in part funded by a research grant of the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils H. Nicolay M.D., Ph.D..

Ethics declarations

Conflict of interest

T. Bostel, A. Pfaffenberger, S. Delorme, C. Dreher, G. Echner, P. Haering, C. Lang, M. Splinter, F. Laun, M. Müller, O. Jäkel, J. Debus, P.E. Huber, F. Sterzing and N.H. Nicolay declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bostel, T., Pfaffenberger, A., Delorme, S. et al. Prospective feasibility analysis of a novel off-line approach for MR-guided radiotherapy. Strahlenther Onkol 194, 425–434 (2018). https://doi.org/10.1007/s00066-017-1258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1258-y

Keywords

Schlüsselwörter

Navigation