Advertisement

Strahlentherapie und Onkologie

, Volume 194, Issue 2, pp 79–90 | Cite as

Predictive and prognostic value of tumor volume and its changes during radical radiotherapy of stage III non-small cell lung cancer

A systematic review
  • Lukas Käsmann
  • Maximilian Niyazi
  • Oliver Blanck
  • Christian Baues
  • René Baumann
  • Sophie Dobiasch
  • Chukwuka Eze
  • Daniel Fleischmann
  • Tobias Gauer
  • Frank A. Giordano
  • Yvonne Goy
  • Jan Hausmann
  • Christoph Henkenberens
  • David Kaul
  • Lisa Klook
  • David Krug
  • Matthias Mäurer
  • Cédric M. Panje
  • Johannes Rosenbrock
  • Lisa Sautter
  • Daniela Schmitt
  • Christoph Süß
  • Alexander H. Thieme
  • Maike Trommer-Nestler
  • Sonia Ziegler
  • Nadja Ebert
  • Daniel Medenwald
  • Christian Ostheimer
  • Young DEGRO Trial Group
Review Article

Abstract

Purpose

Lung cancer remains the leading cause of cancer-related mortality worldwide. Stage III non-small cell lung cancer (NSCLC) includes heterogeneous presentation of the disease including lymph node involvement and large tumour volumes with infiltration of the mediastinum, heart or spine. In the treatment of stage III NSCLC an interdisciplinary approach including radiotherapy is considered standard of care with acceptable toxicity and improved clinical outcome concerning local control. Furthermore, gross tumour volume (GTV) changes during definitive radiotherapy would allow for adaptive replanning which offers normal tissue sparing and dose escalation.

Methods

A literature review was conducted to describe the predictive value of GTV changes during definitive radiotherapy especially focussing on overall survival. The literature search was conducted in a two-step review process using PubMed®/Medline® with the key words “stage III non-small cell lung cancer” and “radiotherapy” and “tumour volume” and “prognostic factors”.

Results

After final consideration 17, 14 and 9 studies with a total of 2516, 784 and 639 patients on predictive impact of GTV, GTV changes and its impact on overall survival, respectively, for definitive radiotherapy for stage III NSCLC were included in this review. Initial GTV is an important prognostic factor for overall survival in several studies, but the time of evaluation and the value of histology need to be further investigated. GTV changes during RT differ widely, optimal timing for re-evaluation of GTV and their predictive value for prognosis needs to be clarified. The prognostic value of GTV changes is unclear due to varying study qualities, re-evaluation time and conflicting results.

Conclusion

The main findings were that the clinical impact of GTV changes during definitive radiotherapy is still unclear due to heterogeneous study designs with varying quality. Several potential confounding variables were found and need to be considered for future studies to evaluate GTV changes during definitive radiotherapy with respect to treatment outcome.

Keywords

Stage III lung cancer Literature review Clinical multicenter trial Tumor volume changes Definitive radiotherapy 

Prädiktiver und prognostischer Wert des Tumorvolumens und seiner Veränderungen während radikaler Strahlentherapie beim nicht-kleinzelligen Bronchialkarzinom im Stadium III

Ein systematischer Review

Zusammenfassung

Zielsetzung

Das Bronchialkarzinom ist die häufigste Ursache krebsbedingter Mortalität weltweit. Das Stadium III des nicht-kleinzelligen Bronchialkarzinoms (NSCLC) präsentiert sich als heterogene Patientengruppe mit Lymphknotenbeteiligung und großen Tumoren mit Infiltration von Mediastinum, Herz und Wirbelsäule. Ein interdisziplinäres Behandlungskonzept mit Strahlentherapie ist Therapiestandard in der Behandlung des Stadium III mit akzeptabler Toxizität und verbessertem klinischen Ergebnis hinsichtlich lokaler Kontrolle. Veränderungen des Tumorvolumens (GTV) unter Strahlentherapie ermöglichen eine adaptive Bestrahlungsplanung mit Normalgewebeschonung und Dosiseskalation.

Methoden

Durchgeführt wurde eine Literaturrecherche zum prädiktiven Wert von GTV-Veränderungen unter Strahlentherapie mit dem Endpunkt „Gesamtüberleben“. Die Recherche wurde in einem zweistufigen Verfahren unter Verwendung von Medline/Pubmed mit den Stichwörtern „stage III non-small cell lung cancer“ und „radiotherapy“ und „tumour volume“ und „prognostic factors“ durchgeführt.

Ergebnisse

Nach finaler Bewertung blieben 17, 14 und 9 Studien mit 2516, 784 und 639 Patienten zum prädiktiven Einfluss von GTV, GTV-Veränderung und dessen Einfluss auf das Gesamtüberleben übrig und wurden in den Review aufgenommen. Das initiale GTV war in verschiedenen Studien ein wichtiger prognostischer Faktor für das Gesamtüberleben. Zeitpunkt der Evaluation und Einfluss der Histologie müssen jedoch weiter untersucht werden. GTV-Veränderungen unter Strahlentherapie variieren sehr. Der optimale Zeitpunkt für eine Reevaluation des GTVs für den prädiktiven Wert auf die Prognose ist unklar. Der prognostische Wert von GTV-Veränderungen ist aufgrund unterschiedlicher Studienqualität und Reevaluationszeitpunkte sowie widersprüchlicher Ergebnisse nicht eindeutig.

Schlussfolgerung

Der klinische Einfluss von GTV-Veränderungen unter definitiver Strahlentherapie bleibt aufgrund des heterogenen Studiendesigns und der variablen Studienqualität unklar. Verschiedene potenziell beeinflussende Faktoren wurden gefunden, die in weiteren Studien zur Klärung des prognostischen Werts von GTV-Veränderungen unter Strahlentherapie berücksichtigt werden sollten.

Schlüsselwörter

Stadium-III-Bronchialkarzinom Literaturrecherche Klinische multizentrische Studie Tumorvolumenveränderungen Definitive Strahlentherapie 

Notes

Funding

The study is partly funded by the Arbeitsgemeinschaft Radioonkologie (ARO).

Conflict of interest

L. Käsmann, M. Niyazi, O. Blanck, C. Baues, R. Baumann, S. Dobiasch, C. Eze, D. Fleischmann, T. Gauer, F.A. Giordano, Y. Goy, J. Hausmann, C. Henkenberens, D. Kaul, L. Klook, D. Krug, M. Mäurer, C.M. Panje, J. Rosenbrock, L. Sautter, D. Schmitt, C. Süß, A.H. Thieme, M. Trommer-Nestler, S. Ziegler, N. Ebert, D. Medenwald and C. Ostheimer; YoungDEGROTrialGroup declare that they have no competing interests.

References

  1. 1.
    Goldstraw P, Crowley J, Chansky K et al (2007) The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2:706–714CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics 2016. CA Cancer J Clin 66:7–30CrossRefPubMedGoogle Scholar
  3. 3.
    Bosmans G, van Baardwijk A, Dekker A et al (2006) Intra-patient variability of tumor volume and tumor motion during conventionally fractionated radiotherapy for locally advanced non-small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 66:748–753CrossRefPubMedGoogle Scholar
  4. 4.
    Fox J, Ford E, Redmond K et al (2009) Quantification of tumor volume changes during radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 74:341–348CrossRefPubMedGoogle Scholar
  5. 5.
    Agrawal V, Coroller TP, Hou Y et al (2016) Radiologic-pathologic correlation of response to chemoradiation in resectable locally advanced NSCLC. Lung Cancer 102:1–8CrossRefPubMedGoogle Scholar
  6. 6.
    Dehing-Oberije C, Yu S, De Ruysscher D et al (2009) Development and external validation of prognostic model for 2‑year survival of non–small-cell lung cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 74:355–362CrossRefPubMedGoogle Scholar
  7. 7.
    Flentje M, Huber RM, Engel-Riedel W et al (2016) GILT—A randomised phase III study of oral vinorelbine and cisplatin with concomitant radiotherapy followed by either consolidation therapy with oral vinorelbine and cisplatin or best supportive care alone in stage III non-small cell lung cancer. Strahlenther Onkol 192:216–222CrossRefPubMedGoogle Scholar
  8. 8.
    Zehentmayr F, Wurstbauer K, Deutschmann H et al (2015) DART-bid: dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily. Strahlenther Onkol 191:256–263CrossRefPubMedGoogle Scholar
  9. 9.
    Fleckenstein J, Kremp K, Kremp S et al (2016) IMRT and 3D conformal radiotherapy with or without elective nodal irradiation in locally advanced NSCLC. Strahlenther Onkol 192:75–82CrossRefPubMedGoogle Scholar
  10. 10.
    Ball DL, Fisher RJ, Burmeister BH et al (2013) The complex relationship between lung tumor volume and survival in patients with non-small cell lung cancer treated by definitive radiotherapy: a prospective, observational prognostic factor study of the Trans-Tasman Radiation Oncology Group (TROG 99.05). Radiother Oncol 106:305–311CrossRefPubMedGoogle Scholar
  11. 11.
    Basaki K, Abe Y, Aoki M et al (2006) Prognostic factors for survival in stage III non-small-cell lung cancer treated with definitive radiation therapy: impact of tumor volume. Int J Radiat Oncol Biol Phys 64:449–454CrossRefPubMedGoogle Scholar
  12. 12.
    Bradley JD, Ieumwananonthachai N, Purdy JA et al (2002) Gross tumor volume, critical prognostic factor in patients treated with three-dimensional conformal radiation therapy for non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 52:49–57CrossRefPubMedGoogle Scholar
  13. 13.
    Dehing-Oberije C, De Ruysscher D, van der Weide H et al (2008) Tumor volume combined with number of positive lymph node stations is a more important prognostic factor than TNM stage for survival of non-small-cell lung cancer patients treated with (chemo) radiotherapy. Int J Radiat Oncol Biol Phys 70:1039–1044CrossRefPubMedGoogle Scholar
  14. 14.
    Dubben H‑H, Thames HD, Beck-Bornholdt H‑P (1998) Tumor volume: a basic and specific response predictor in radiotherapy. Radiother Oncol 47:167–174CrossRefPubMedGoogle Scholar
  15. 15.
    Etiz D, Marks LB, Zhou S‑M et al (2002) Influence of tumor volume on survival in patients irradiated for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 53:835–846CrossRefPubMedGoogle Scholar
  16. 16.
    Ding X, Li H, Wang Z et al (2013) A clinical study of shrinking field radiation therapy based on 18F-FDG PET/CT for stage III non-small cell lung cancer. Technol Cancer Res Treat 12:251–257CrossRefPubMedGoogle Scholar
  17. 17.
    Bral S, Duchateau M, De Ridder M et al (2009) Volumetric response analysis during chemoradiation as predictive tool for optimizing treatment strategy in locally advanced unresectable NSCLC. Radiother Oncol 91:438–442CrossRefPubMedGoogle Scholar
  18. 18.
    Martel MK, Strawderman M, Hazuka MB et al (1997) Volume and dose parameters for survival of non-small cell lung cancer patients. Radiother Oncol 44:23–29CrossRefPubMedGoogle Scholar
  19. 19.
    Werner-Wasik M, Xiao Y, Pequignot E et al (2001) Assessment of lung cancer response after nonoperative therapy: tumor diameter, bidimensional product, and volume. A serial CT scan-based study. Int J Radiat Oncol Biol Phys 51:56–61CrossRefPubMedGoogle Scholar
  20. 20.
    Willner J, Baier K, Caragiani E et al (2002) Dose, volume, and tumor control prediction in primary radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 52:382–389CrossRefPubMedGoogle Scholar
  21. 21.
    Stinchcombe TE, Morris DE, Moore DT, al at (2006) Post-chemotherapy gross tumor volume is predictive of survival in patients with stage III non-small cell lung cancer treated with combined modality therapy. Lung Cancer 52:67–74CrossRefPubMedGoogle Scholar
  22. 22.
    Werner-Wasik M, Swann RS, Bradley J et al (2008) Increasing tumor volume is predictive of poor overall and progression-free survival: secondary analysis of the Radiation Therapy Oncology Group 93–11 phase I–II radiation dose-escalation study in patients with inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 70:385–390CrossRefPubMedGoogle Scholar
  23. 23.
    Wurstbauer K, Deutschmann H, Dagn K et al (2013) DART-bid (Dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily) — a novel approach for non-resected NSCLC: final results of a prospective study, correlating radiation dose to tumor volume. Radiat Oncol 8:49CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Koo TR, Moon SH, Lim YJ et al (2014) The effect of tumor volume and its change on survival in stage III non-small cell lung cancer treated with definitive concurrent chemoradiotherapy. Radiat Oncol 9:283CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jeong J‑U, Chung W‑K, Nam T‑K et al (2014) Early metabolic response on 18 F-Fluorodeoxyglucose — positron-emission tomography/computed tomography after concurrent chemoradiotherapy for advanced stage III non-small cell lung cancer is correlated with local tumor control and survival. Anticancer Res 34:2517–2523PubMedGoogle Scholar
  26. 26.
    Kong M, Hong SE (2016) Comparison of survival rates between 3D conformal radiotherapy and intensity-modulated radiotherapy in patients with stage iii non-small cell lung cancer. Onco Targets Ther 9:7227–7234CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kanzaki H, Kataoka M, Nishikawa A et al (2016) Impact of early tumor reduction on outcome differs by histological subtype in stage III non-small-cell lung cancer treated with definitive radiotherapy. Int J Clin Oncol 21:853–861CrossRefPubMedGoogle Scholar
  28. 28.
    Kim YH, Ahn SJ, Kim YC, al at (2006) Predictive factors for survival and correlation to toxicity in advanced stage III non-small cell lung cancer patients with concurrent chemoradiation. Jpn J Clin Oncol 46:144–151Google Scholar
  29. 29.
    Alexander BM, Othus M, Caglar HB et al (2011) Tumor volume is a prognostic factor in non-small-cell lung cancer treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 79:1381–1387CrossRefPubMedGoogle Scholar
  30. 30.
    Erridge SC, Seppenwoolde Y, Muller SH et al (2003) Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer. Radiother Oncol 66:75–85CrossRefPubMedGoogle Scholar
  31. 31.
    Siker ML, Tomé WA, Mehta MP (2006) Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect? Int J Radiat Oncol Biol Phys 66:135–141CrossRefPubMedGoogle Scholar
  32. 32.
    Woodford C, Yartsev S, Dar AR et al (2007) Adaptive radiotherapy planning on decreasing gross tumor volumes as seen on megavoltage computed tomography images. Int J Radiat Oncol Biol Phys 69:1316–1322CrossRefPubMedGoogle Scholar
  33. 33.
    Gillham C, Zips D, Pönisch F et al (2008) Additional PET/CT in week 5–6 of radiotherapy for patients with stage III non-small cell lung cancer as a means of dose escalation planning? Radiother Oncol 88:335–341CrossRefPubMedGoogle Scholar
  34. 34.
    Ostheimer C, Schweyer F, Reese T et al (2016) The relationship between tumor volume changes and serial plasma osteopontin detection during radical radiotherapy of non-small-cell lung cancer. Oncol Lett 12:3449–3456CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Elsayad K, Kriz J, Reinartz G et al (2016) Cone-beam CT-guided radiotherapy in the management of lung cancer. Strahlenther Onkol 192:83–91CrossRefPubMedGoogle Scholar
  36. 36.
    van Elmpt W, Öllers M, Dingemans A‑MC et al (2012) Response assessment using 18 F-FDG PET early in the course of chemo-radiotherapy is correlated with survival in advanced stage non-small cell lung cancer. J Nucl Med 53:1514–1520CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Usmanij EA, de Geus-Oei L‑F, Troost EG et al (2013) 18 F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. J Nucl Med 54:1528–1534CrossRefPubMedGoogle Scholar
  38. 38.
    Vera P, Mezzani-Saillard S, Edet-Sanson A et al (2014) FDG PET during radiochemotherapy is predictive of outcome at 1 year in non-small-cell lung cancer patients: a prospective multicentre study (RTEP2). Eur J Nucl Med Mol Imaging 41:1057–1065CrossRefPubMedGoogle Scholar
  39. 39.
    Huang W, Liu B, Fan M et al (2015) The early predictive value of a decrease of metabolic tumor volume in repeated 18 F-FDG PET/CT for recurrence of locally advanced non-small cell lung cancer with concurrent radiochemotherapy. Eur J Radiol 84:482–488CrossRefPubMedGoogle Scholar
  40. 40.
    Dong X, Sun X, Sun L et al (2016) Early change in metabolic tumor heterogeneity during chemoradiotherapy and its prognostic value for patients with locally advanced non-small cell lung cancer. PLOS ONE 11:e157836CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dehing-Oberije C, Aerts H, Yu S et al (2011) Development and validation of a prognostic model using blood biomarker information for prediction of survival of non-small-cell lung cancer patients treated with combined chemotherapy and radiation or radiotherapy alone (NCT00181519, NCT00573040, and NCT00572325). Int J Radiat Oncol Biol Phys 81:360–368CrossRefPubMedGoogle Scholar
  42. 42.
    Jeremić B (2015) Standard treatment option in stage III non-small-cell lung cancer: case against trimodal therapy and consolidation drug therapy. Clin Lung Cancer 16:80–85CrossRefPubMedGoogle Scholar
  43. 43.
    Eberhardt WEE, Pöttgen C, Gauler TC et al (2015) Phase III study of surgery versus definitive concurrent chemoradiotherapy boost in patients with resectable stage IIIA (N2) and selected IIIB non-small-cell lung cancer after induction chemotherapy and concurrent chemoradiotherapy (ESPATUE). J Clin Oncol 33:4194–4201CrossRefPubMedGoogle Scholar
  44. 44.
    Park J, Ahn YC, Kim H et al (2003) A phase II trial of concurrent chemoradiation therapy followed by consolidation chemotherapy with oral etoposide and cisplatin for locally advanced inoperable non-small cell lung cancers. Lung Cancer 42:227–235CrossRefPubMedGoogle Scholar
  45. 45.
    Oshita F, Ohe M, Honda T et al (2010) Phase II study of nedaplatin and irinotecan with concurrent thoracic radiotherapy in patients with locally advanced non-small-cell lung cancer. Br J Cancer 103:1325–1330CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Lukas Käsmann
    • 1
  • Maximilian Niyazi
    • 2
    • 3
    • 20
  • Oliver Blanck
    • 4
  • Christian Baues
    • 5
  • René Baumann
    • 4
  • Sophie Dobiasch
    • 6
  • Chukwuka Eze
    • 2
  • Daniel Fleischmann
    • 2
    • 3
    • 20
  • Tobias Gauer
    • 7
  • Frank A. Giordano
    • 8
  • Yvonne Goy
    • 7
  • Jan Hausmann
    • 9
  • Christoph Henkenberens
    • 10
  • David Kaul
    • 11
  • Lisa Klook
    • 5
  • David Krug
    • 12
  • Matthias Mäurer
    • 13
  • Cédric M. Panje
    • 14
  • Johannes Rosenbrock
    • 5
  • Lisa Sautter
    • 8
  • Daniela Schmitt
    • 12
  • Christoph Süß
    • 15
  • Alexander H. Thieme
    • 11
  • Maike Trommer-Nestler
    • 5
  • Sonia Ziegler
    • 16
  • Nadja Ebert
    • 17
    • 21
  • Daniel Medenwald
    • 18
  • Christian Ostheimer
    • 18
    • 19
  • Young DEGRO Trial Group
  1. 1.Department of Radiation OncologyUniversity of LübeckLübeckGermany
  2. 2.Department of Radiation OncologyLMU MunichMunichGermany
  3. 3.German Cancer Consortium (DKTK), partner site MunichMunichGermany
  4. 4.Department of Radiation OncologyUniversity Medical Center Schleswig-HolsteinKielGermany
  5. 5.Department of RadiotherapyUniversity Hospital of CologneCologneGermany
  6. 6.Department of Radiation OncologyTechnische Universität MünchenMunichGermany
  7. 7.Department of Radiotherapy and Radio-OncologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  8. 8.Department of Radiation OncologyUniversity Medical Center MannheimMannheimGermany
  9. 9.Department of Radiation OncologyUniversity Medical Center DüsseldorfDüsseldorfGermany
  10. 10.Department of Radiation and Special OncologyHannover Medical SchoolHannoverGermany
  11. 11.Department of Radiation OncologyCharité School of Medicine and University Hospital, Campus Virchow-KlinikumBerlinGermany
  12. 12.Department of Radiation OncologyUniversity Hospital Heidelberg and National Center for Radiation Research in Oncology (NCRO) and Heidelberg Institute for Radiation Oncology (HIRO)HeidelbergGermany
  13. 13.Department of Radiation OncologyUniversity Medical Center JenaJenaGermany
  14. 14.Department of Radiation OncologyKantonsspital St. GallenSt. GallenSwitzerland
  15. 15.Department of Radiation OncologyUniversity Medical Center RegensburgRegensburgGermany
  16. 16.Department of Radiation OncologyUniversity Medical Center ErlangenErlangenGermany
  17. 17.Department of Radiation OncologyUniversity Medical Center DresdenDresdenGermany
  18. 18.Department of Radiation Oncology, Faculty of MedicineMartin Luther University Halle-WittenbergHalleGermany
  19. 19.Klinik und Poliklinik für StrahlentherapieUniversitätsklinikum Halle (Saale)Germany
  20. 20.German Cancer Research Center (DKFZ)HeidelbergGermany
  21. 21.OncoRay—National Center for Radiation Research in OncologyDresdenGermany

Personalised recommendations