Strahlentherapie und Onkologie

, Volume 193, Issue 11, pp 951–960 | Cite as

Re-expression of pro-fibrotic, embryonic preserved mediators in irradiated arterial vessels of the head and neck region

  • Patrick MöbiusEmail author
  • Raimund H. M. Preidl
  • Manuel Weber
  • Kerstin Amann
  • Friedrich W. Neukam
  • Falk Wehrhan
Original Article



Surgical treatment of head and neck malignancies frequently includes microvascular free tissue transfer. Preoperative radiotherapy increases postoperative fibrosis-related complications up to transplant loss. Fibrogenesis is associated with re-expression of embryonic preserved tissue developmental mediators: osteopontin (OPN), regulated by sex-determining region Y‑box 9 (Sox9), and homeobox A9 (HoxA9) play important roles in pathologic tissue remodeling and are upregulated in atherosclerotic vascular lesions; dickkopf-1 (DKK1) inhibits pro-fibrotic and atherogenic Wnt signaling. We evaluated the influence of irradiation on expression of these mediators in arteries of the head and neck region.

Materials and methods

DKK1, HoxA9, OPN, and Sox9 expression was examined immunohistochemically in 24 irradiated and 24 nonirradiated arteries of the lower head and neck region. The ratio of positive cells to total cell number (labeling index) in the investigated vessel walls was assessed semiquantitatively.


DKK1 expression was significantly decreased, whereas HoxA9, OPN, and Sox9 expression were significantly increased in irradiated compared to nonirradiated arterial vessels.


Preoperative radiotherapy induces re-expression of embryonic preserved mediators in arterial vessels and may thus contribute to enhanced activation of pro-fibrotic downstream signaling leading to media hypertrophy and intima degeneration comparable to fibrotic development steps in atherosclerosis. These histopathological changes may be promoted by HoxA9-, OPN-, and Sox9-related inflammation and vascular remodeling, supported by downregulation of anti-fibrotic DKK1. Future pharmaceutical strategies targeting these vessel alterations, e. g., bisphosphonates, might reduce postoperative complications in free tissue transfer.


Radiotherapy Vascular remodeling Embryology Immunohistochemistry Inflammation 

Reexpression profibrotischer, embryonal konservierter Mediatoren in bestrahlten arteriellen Gefäßen der Kopf- und Halsregion



Die operative Behandlung von Tumoren im Kopf- und Halsbereich umfasst den Transfer mikrovaskulärer Gewebetransplantate. Präoperative Bestrahlung verursacht eine erhöhte Inzidenz fibrosebedingter Komplikationen bis zum Transplantatverlust. Die Fibroseentstehung ist mit der Reexpression embryonal konservierter, in der Gewebeentwicklung relevanter Mediatoren assoziiert: Osteopontin (OPN), reguliert von Sex determining region Y‑box 9 (Sox9), und Homeobox A9 (HoxA9) spielen wichtige Rollen im pathologischen Gewebeumbau und sind hochreguliert in arteriosklerotischen Gefäßläsionen; Dickkopf-1 (DKK1) inhibiert den profibrotischen, atherogenen Wnt-Signalweg. Wir untersuchten den Einfluss der Bestrahlung auf die Expression dieser Mediatoren in Arterien der Kopf- und Halsregion.

Material und Methoden

Die Expression von DKK1, HoxA9, OPN und Sox9 wurde in 24 bestrahlten und 24 nichtbestrahlten Arterien der unteren Kopf- und Halsregion immunhistochemisch untersucht. Das Verhältnis positiver Zellen zur Gesamtzellzahl (Färbungsindex) in den untersuchten Gefäßwänden wurde semiquantitativ bestimmt.


Die Expression von DKK1 war in bestrahlten im Vergleich zu nichtbestrahlten arteriellen Gefäßen signifikant erniedrigt, die von HoxA9, OPN und Sox9 hingegen signifikant erhöht.


Präoperative Bestrahlung induziert die Reexpression embryonal konservierter Mediatoren in arteriellen Gefäßen und könnte somit zur verstärkten Aktivierung des profibrotischen Downstreams beitragen, was zu Mediahypertrophie und Intimadegeneration, vergleichbar mit fibrotischen Entwicklungsstufen bei Arteriosklerose, führt. Diese histopathologischen Veränderungen könnten durch HoxA9-, OPN- und Sox9-beeinflusste Inflammation und Gefäßumbau begünstigt werden, unterstützt durch die Herabregulierung des antifibrotischen DKK1. Pharmazeutische Strategien gegen derartige Gefäßveränderungen, z. B. mit Bisphosphonaten, könnten postoperative Komplikationen nach freiem Gewebetransfer reduzieren.


Strahlentherapie Gefäßumbau Immunhistochemie Embryologie Entzündung 



The present study was financially supported by the “ELAN Fonds der Universität Erlangen”.

Compliance with ethical guidelines

Conflict of interest

P. Möbius, R.H.M. Preidl, M. Weber, K. Amann, F.W. Neukam, and F. Wehrhan declare that they have no competing interests.

Ethical standards

All studies on humans presented in this manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Ethical aspects of the present study are approved by the ethics committee of the University of Erlangen-Nuremberg, Germany (Ref.-No. 83_13B).


  1. 1.
    Preidl RH, Wehrhan F, Schlittenbauer T, Neukam FW, Stockmann P (2015) Perioperative factors that influence the outcome of microsurgical reconstructions in craniomaxillofacial surgery. Br J Oral Maxillofac Surg. doi: 10.1016/j.bjoms.2015.03.007 PubMedGoogle Scholar
  2. 2.
    Schultze-Mosgau S, Wehrhan F, Amann K, Radespiel-Troger M, Rodel F, Grabenbauer GG (2003) In Vivo TGF-beta 3 expression during wound healing in irradiated tissue. An experimental study. Strahlenther Onkol 179(6):410–416. doi: 10.1007/s00066-003-1049-5 CrossRefPubMedGoogle Scholar
  3. 3.
    Schultze-Mosgau S, Rodel F, Radespiel-Troger M, Worl J, Grabenbauer GG, Neukam FW (2002) Vascularization of the area between free grafts and irradiated graft beds in the neck in rats. Br J Oral Maxillofac Surg 40(1):37–44. doi: 10.1054/bjom.2001.0651 CrossRefPubMedGoogle Scholar
  4. 4.
    Schultze-Mosgau S, Wehrhan F, Rodel F, Amann K, Radespiel-Troger M, Grabenbauer GG (2003) Transforming growth factor-beta receptor-II up-regulation during wound healing in previously irradiated graft beds in vivo. Wound Repair Regen 11(4):297–305CrossRefPubMedGoogle Scholar
  5. 5.
    Kasper M, Fehrenbach H (2000) Immunohistochemical evidence for the occurrence of similar epithelial phenotypes during lung development and radiation-induced fibrogenesis. Int J Radiat Biol 76(4):493–501CrossRefPubMedGoogle Scholar
  6. 6.
    Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784. doi: 10.1172/JCI20530 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sas-Korczynska B, Luczynska E, Kamzol W, Sokolowski A (2016) Analysis of risk factors for pulmonary complications in patients with limited-stage small cell lung cancer: a single-centre retrospective study. Strahlenther Onkol. doi: 10.1007/s00066-016-1069-6 PubMedGoogle Scholar
  8. 8.
    Sun Z, Wang C, Shi C, Sun F, Xu X, Qian W, Nie S, Han X (2014) Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis. Int J Mol Med 33(5):1097–1109. doi: 10.3892/ijmm.2014.1672 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391(6665):357–362. doi: 10.1038/34848 CrossRefPubMedGoogle Scholar
  10. 10.
    Trigueros-Motos L, Gonzalez-Granado JM, Cheung C, Fernandez P, Sanchez-Cabo F, Dopazo A, Sinha S, Andres V (2013) Embryological-origin-dependent differences in homeobox expression in adult aorta: role in regional phenotypic variability and regulation of NF-kappaB activity. Arterioscler Thromb Vasc Biol 33(6):1248–1256. doi: 10.1161/ATVBAHA.112.300539 CrossRefPubMedGoogle Scholar
  11. 11.
    Kawai T, Yasuchika K, Ishii T, Miyauchi Y, Kojima H, Yamaoka R, Katayama H, Yoshitoshi EY, Ogiso S, Kita S, Yasuda K, Fukumitsu K, Komori J, Hatano E, Kawaguchi Y, Uemoto S (2016) SOX9 is a novel cancer stem cell marker surrogated by osteopontin in human hepatocellular carcinoma. Sci Rep 6:30489. doi: 10.1038/srep30489 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pritchett J, Harvey E, Athwal V, Berry A, Rowe C, Oakley F, Moles A, Mann DA, Bobola N, Sharrocks AD, Thomson BJ, Zaitoun AM, Irving WL, Guha IN, Hanley NA, Hanley KP (2012) Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology 56(3):1108–1116. doi: 10.1002/hep.25758 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kilic G, Wang J, Sosa-Pineda B (2006) Osteopontin is a novel marker of pancreatic ductal tissues and of undifferentiated pancreatic precursors in mice. Dev Dyn 235(6):1659–1667. doi: 10.1002/dvdy.20729 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Piera-Velazquez S, Mendoza FA, Jimenez SA (2016) Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases. J Clin Med 5(4). doi: 10.3390/jcm5040045 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ferrell CM, Dorsam ST, Ohta H, Humphries RK, Derynck MK, Haqq C, Largman C, Lawrence HJ (2005) Activation of stem-cell specific genes by HOXA9 and HOXA10 homeodomain proteins in CD34+ human cord blood cells. Stem Cells 23(5):644–655. doi: 10.1634/stemcells.2004-0198 CrossRefPubMedGoogle Scholar
  16. 16.
    Bastakoty D, Young PP (2016) Wnt/beta-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J 30(10):3271–3284. doi: 10.1096/fj.201600502R CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pugliese G, Iacobini C, Blasetti Fantauzzi C, Menini S (2015) The dark and bright side of atherosclerotic calcification. Atherosclerosis 238(2):220–230. doi: 10.1016/j.atherosclerosis.2014.12.011 CrossRefPubMedGoogle Scholar
  18. 18.
    Scheraga RG, Thannickal VJ (2014) Wnt/beta-catenin and transforming growth factor-beta signaling in pulmonary fibrosis. A case for antagonistic pleiotropy? Am J Respir Crit Care Med 190(2):129–131. doi: 10.1164/rccm.201406-1037ED CrossRefPubMedGoogle Scholar
  19. 19.
    Lin H, Angeli M, Chung KJ, Ejimadu C, Rivera Rosa A, Lee T (2016) sFRP2 activates Wnt/beta-catenin signaling in cardiac fibroblasts: differential roles in cell growth, energy metabolism and extracellular matrix remodeling. Am J Physiol, Cell Physiol 00137:02016. doi: 10.1152/ajpcell.00137.2016 Google Scholar
  20. 20.
    Blyszczuk P, Muller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Luscher TF, Distler O, Eriksson U, Kania G (2016) Transforming growth factor-beta-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. doi: 10.1093/eurheartj/ehw116 Google Scholar
  21. 21.
    Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM (2015) Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol 141(11):1985–1994. doi: 10.1007/s00432-015-1974-6 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Scott AS, Parr LA, Johnstone PA (2009) Risk of cerebrovascular events after neck and supraclavicular radiotherapy: a systematic review. Radiother Oncol 90(2):163–165. doi: 10.1016/j.radonc.2008.12.019 CrossRefPubMedGoogle Scholar
  23. 23.
    Youn SW, Park KK (2015) Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int J Mol Sci 16(5):11804–11833. doi: 10.3390/ijms160511804 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cantile M, Schiavo G, Terracciano L, Cillo C (2008) Homeobox genes in normal and abnormal vasculogenesis. Nutr Metab Cardiovasc Dis 18(10):651–658. doi: 10.1016/j.numecd.2008.08.001 CrossRefPubMedGoogle Scholar
  25. 25.
    Patties I, Haagen J, Dorr W, Hildebrandt G, Glasow A (2015) Late inflammatory and thrombotic changes in irradiated hearts of C57BL/6 wild-type and atherosclerosis-prone ApoE-deficient mice. Strahlenther Onkol 191(2):172–179. doi: 10.1007/s00066-014-0745-7 CrossRefPubMedGoogle Scholar
  26. 26.
    Halle M, Gabrielsen A, Paulsson-Berne G, Gahm C, Agardh HE, Farnebo F, Tornvall P (2010) Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J Am Coll Cardiol 55(12):1227–1236. doi: 10.1016/j.jacc.2009.10.047 CrossRefPubMedGoogle Scholar
  27. 27.
    Alvarado-Ruiz L, Martinez-Silva MG, Torres-Reyes LA, Pina-Sanchez P, Ortiz-Lazareno P, Bravo-Cuellar A, Aguilar-Lemarroy A, Jave-Suarez LF (2016) HOXA9 is underexpressed in cervical cancer cells and its restoration decreases proliferation, migration and expression of epithelial-to-mesenchymal transition genes. Asian Pac J Cancer Prev 17(3):1037–1047CrossRefPubMedGoogle Scholar
  28. 28.
    Kothari AN, Arffa ML, Chang V, Blackwell RH, Syn WK, Zhang J, Mi Z, Kuo PC (2016) Osteopontin – a master regulator of epithelial-mesenchymal transition. J Clin Med 5(4). doi: 10.3390/jcm5040039 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Giachelli CM, Liaw L, Murry CE, Schwartz SM, Almeida M (1995) Osteopontin expression in cardiovascular diseases. Ann N Y Acad Sci 760:109–126CrossRefPubMedGoogle Scholar
  30. 30.
    Ding Y, Chen J, Cui G, Wei Y, Lu C, Wang L, Diao H (2016) Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. Biochem Biophys Res Commun 471(1):5–9. doi: 10.1016/j.bbrc.2016.01.142 CrossRefPubMedGoogle Scholar
  31. 31.
    Wang X, Lopategi A, Ge X, Lu Y, Kitamura N, Urtasun R, Leung TM, Fiel MI, Nieto N (2014) Osteopontin induces ductular reaction contributing to liver fibrosis. Gut 63(11):1805–1818. doi: 10.1136/gutjnl-2013-306373 CrossRefPubMedGoogle Scholar
  32. 32.
    Mucke T, Rau A, Weitz J, Ljubic A, Rohleder N, Wolff KD, Mitchell DA, Kesting MR (2012) Influence of irradiation and oncologic surgery on head and neck microsurgical reconstructions. Oral Oncol 48(4):367–371. doi: 10.1016/j.oraloncology.2011.11.013 CrossRefPubMedGoogle Scholar
  33. 33.
    Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T (2004) DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23(52):8520–8526. doi: 10.1038/sj.onc.1207892 CrossRefPubMedGoogle Scholar
  34. 34.
    Lieven O, Knobloch J, Ruther U (2010) The regulation of Dkk1 expression during embryonic development. Dev Biol 340(2):256–268. doi: 10.1016/j.ydbio.2010.01.037 CrossRefPubMedGoogle Scholar
  35. 35.
    Dees C, Schlottmann I, Funke R, Distler A, Palumbo-Zerr K, Zerr P, Lin NY, Beyer C, Distler O, Schett G, Distler JH (2014) The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann Rheum Dis 73(6):1232–1239. doi: 10.1136/annrheumdis-2012-203194 CrossRefPubMedGoogle Scholar
  36. 36.
    Preidl RH, Mobius P, Weber M, Amann K, Neukam FW, Schlegel A, Wehrhan F (2014) Expression of transforming growth factor beta 1‑related signaling proteins in irradiated vessels. Strahlenther Onkol. doi: 10.1007/s00066-014-0797-8 PubMedGoogle Scholar
  37. 37.
    Wehrhan F, Grabenbauer GG, Rodel F, Amann K, Schultze-Mosgau S (2004) Exogenous modulation of TGF-beta(1) influences TGF-betaR-III-associated vascularization during wound healing in irradiated tissue. Strahlenther Onkol 180(8):526–533. doi: 10.1007/s00066-004-1212-7 CrossRefPubMedGoogle Scholar
  38. 38.
    Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH (2012) Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun 3:735. doi: 10.1038/ncomms1734 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Trivedi CM, Patel RC, Patel CV (2007) Homeobox gene HOXA9 inhibits nuclear factor-kappa B dependent activation of endothelium. Atherosclerosis 195(2):e50–60. doi: 10.1016/j.atherosclerosis.2007.04.055 CrossRefPubMedGoogle Scholar
  40. 40.
    Gorski DH, Walsh K (2000) The role of homeobox genes in vascular remodeling and angiogenesis. Circ Res 87(10):865–872CrossRefPubMedGoogle Scholar
  41. 41.
    Bruderer M, Alini M, Stoddart MJ (2013) Role of HOXA9 and VEZF1 in endothelial biology. J Vasc Res 50(4):265–278. doi: 10.1159/000353287 CrossRefPubMedGoogle Scholar
  42. 42.
    Spanjer AI, Baarsma HA, Oostenbrink LM, Jansen SR, Kuipers CC, Lindner M, Postma DS, Meurs H, Heijink IH, Gosens R, Konigshoff M (2016) TGF-beta-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8. FASEB J. doi: 10.1096/fj.201500129 PubMedGoogle Scholar
  43. 43.
    Cho HJ, Cho HJ, Kim HS (2009) Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 11(3):206–213CrossRefPubMedGoogle Scholar
  44. 44.
    Bruemmer D, Collins AR, Noh G, Wang W, Territo M, Arias-Magallona S, Fishbein MC, Blaschke F, Kintscher U, Graf K, Law RE, Hsueh WA (2003) Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Invest 112(9):1318–1331. doi: 10.1172/JCI18141 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kang N, Ng CS, Hu J, Qiu ZB, Underwood MJ, Jeremy JY, Wan S (2012) Role of osteopontin in the development of neointimal hyperplasia in vein grafts. Eur J Cardiothorac Surg 41(6):1384–1389. doi: 10.1093/ejcts/ezr200 CrossRefPubMedGoogle Scholar
  46. 46.
    Arriazu E, Ge X, Leung TM, Magdaleno F, Lopategi A, Lu Y, Kitamura N, Urtasun R, Theise N, Antoine DJ, Nieto N (2016) Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut. doi: 10.1136/gutjnl-2015-310752 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Wolak T (2014) Osteopontin – a multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis 236(2):327–337. doi: 10.1016/j.atherosclerosis.2014.07.004 CrossRefPubMedGoogle Scholar
  48. 48.
    Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, Kang R, Shi LL, Mok J, Lee MJ, Haydon RC (2014) The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis 1(2):149–161. doi: 10.1016/j.gendis.2014.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wu L, Zhu L, Shi WH, Zhang J, Ma D, Yu B (2009) Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol 602(1):124–131. doi: 10.1016/j.ejphar.2008.10.043 CrossRefPubMedGoogle Scholar
  50. 50.
    Ylitalo R (2000) Bisphosphonates and atherosclerosis. Gen Pharmacol 35(6):287–296CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial Surgery, University Hospital of ErlangenFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Department of Nephropathology, Institute of Pathology, University Hospital of ErlangenFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.PinzbergGermany

Personalised recommendations