Advertisement

Strahlentherapie und Onkologie

, Volume 193, Issue 10, pp 780–790 | Cite as

Planning benchmark study for SBRT of early stage NSCLC

Results of the DEGRO Working Group Stereotactic Radiotherapy
  • Christos MoustakisEmail author
  • Oliver Blanck
  • Fatemeh Ebrahimi Tazehmahalleh
  • Mark ka heng Chan
  • Iris Ernst
  • Thomas Krieger
  • Marciana-Nona Duma
  • Markus Oechsner
  • Ute Ganswindt
  • Christian Heinz
  • Horst Alheit
  • Hilbert Blank
  • Ursula Nestle
  • Rolf Wiehle
  • Christine Kornhuber
  • Christian Ostheimer
  • Cordula Petersen
  • Gerhard Pollul
  • Wolfgang Baus
  • Georg Altenstein
  • Eric Beckers
  • Katrin Jurianz
  • Florian Sterzing
  • Matthias Kretschmer
  • Heinrich Seegenschmiedt
  • Torsten Maass
  • Stefan Droege
  • Ulrich Wolf
  • Juergen Schoeffler
  • Uwe Haverkamp
  • Hans Theodor Eich
  • Matthias Guckenberger
Original Article

Abstract

Purpose

The aim was to evaluate stereotactic body radiation therapy (SBRT) treatment planning variability for early stage nonsmall cell lung cancer (NSCLC) with respect to the published guidelines of the Stereotactic Radiotherapy Working Group of the German Society for Radiation Oncology (DEGRO).

Materials and methods

Planning computed tomography (CT) scan and the structure sets (planning target volume, PTV; organs at risk, OARs) of 3 patients with early stage NSCLC were sent to 22 radiotherapy departments with SBRT experience: each department was asked to prepare a treatment plan according to the DEGRO guidelines. The prescription dose was 3 fractions of 15 Gy to the 65% isodose.

Results

In all, 87 plans were generated: 36 used intensity-modulated arc therapy (IMAT), 21 used three-dimensional conformal radiation therapy (3DCRT), 6 used static field intensity-modulated radiation therapy (SF-IMRT), 9 used helical radiotherapy and 15 used robotic radiosurgery. PTV dose coverage and simultaneously kept OARs doses were within the clinical limits published in the DEGRO guidelines. However, mean PTV dose (mean 58.0 Gy, range 52.8–66.4 Gy) and dose conformity indices (mean 0.75, range 0.60–1.00) varied between institutions and techniques (p ≤ 0.02). OARs doses varied substantially between institutions, but appeared to be technique independent (p = 0.21).

Conclusion

All studied treatment techniques are well suited for SBRT of early stage NSCLC according to the DEGRO guidelines. Homogenization of SBRT practice in Germany is possible through the guidelines; however, detailed treatment plan characteristics varied between techniques and institutions and further homogenization is warranted in future studies and recommendations. Optimized treatment planning should always follow the ALARA (as low as reasonably achievable) principle.

Keywords

Stereotactic radiation therapy Nonsmall cell lung cancer Organs at risk Planning benchmark study Quality assurance 

Planvergleichsstudie bei der SBRT des NSCLC im Frühstadium

Ergebnisse der DEGRO AG Stereotaxie

Zusammenfassung

Hintergrund

Ziel war die Untersuchung der Variabilität der Bestrahlungsplanung der stereotaktischen Strahlentherapie (SBRT) für das nicht-kleinzellige Bronchialkarzinom (NSCLC) im Frühstadium in Bezug auf die veröffentlichten Empfehlungen der Arbeitsgemeinschaft Stereotaxie der Deutschen Gesellschaft für Radioonkologie (DEGRO).

Material und Methoden

Planungscomputertomographie und Strukturdatensätze (Planungszielvolumen, PTV; Risikoorgane, OARs) von 3 NSCLC-Patienten im Frühstadium wurden an 22 Strahlentherapieabteilungen mit SBRT-Erfahrung gesendet: Jede Abteilung sollte einen Behandlungsplan nach DEGRO-Richtlinie generieren. Die Verschreibungsdosis betrug 3 Fraktionen mit je 15 Gy auf die 65%-Isodose.

Ergebnisse

Es wurden 87 Pläne erzeugt: 36 mit intensitätsmodulierter Arc-Therapie (IMAT), 21 mit dreidimensionaler konformaler Strahlentherapie (3D-CRT), 6 mit intensitätsmodulierte Radiotherapie mit statischen Feldern (SF-IMRT), 9 mit helikaler Strahlentherapie und 15 mit robotergestützter Radiochirurgie. PTV-Dosisabdeckung und alle gleichzeitig erfassten OAR-Dosen hielten sich an die klinischen Grenzwerte der DEGRO-Richtlinie. Dennoch variierten durchschnittliche PTV-Dosen (Mittelwert 58,0 Gy; Spanne 52,8–66,4 Gy) und Dosiskonformitätsindizes (Mittelwert 0,75; Spanne 0,60–1,00) zwischen Institutionen und Techniken (p ≤ 0,02). OAR-Dosen variierten erheblich zwischen den Institutionen, aber unabhängig von der Technik (p = 0,21).

Schlussfolgerung

Alle untersuchten Behandlungstechniken eignen sich gemäß den DEGRO-Empfehlungen für die SBRT von NSCLC im Frühstadium. Die Homogenisierung der SBRT-Anwendung in Deutschland ist durch die Richtlinien möglich; jedoch waren einige Charakteristika der Behandlungspläne stark technik- und benutzerabhängig und eine weitere Homogenisierung ist für künftige Studien und Empfehlungen nötig. Eine optimierte Bestrahlungsplanung sollte immer dem ALARA-Prinzip (so niedrig wie vernünftig erreichbar) folgen.

Schlüsselwörter

Stereotaktische Strahlentherapie Nicht-kleinzelliges Bronchialkarzinom Risikoorgane Qualitätssicherung Planvergleichsstudie 

Notes

Compliance with ethical guidelines

Conflict of interest

C. Moustakis, O. Blanck, F. Ebrahimi, M. ka heng Chan, I. Ernst, T. Krieger, M.-N. Duma, M. Oechsner, U. Ganswindt, C. Heinz, H. Alheit, H. Blank, U. Nestle, R. Wiehle, C. Kornhuber, C. Ostheimer, C. Petersen, G. Pollul, W. Baus, G. Altenstein, E. Beckers, K. Jurianz, F. Sterzing, M. Kretschmer, H. Seegenschmiedt, T. Maass, S. Droege, U. Wolf, J. Schoeffler, U. Haverkamp, H. Eich and M. Guckenberger declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Rocco G, Morabito A, Leone A et al (2016) Management of non-small cell lung cancer in the era of personalized medicine. Int J Biochem Cell Biol 78:173–179CrossRefPubMedGoogle Scholar
  2. 2.
    Guckenberger M, Allgauer M, Appold S et al (2013) Safety and efficacy of stereotactic body radiotherapy for stage I non-small-cell lung cancer in routine clinical practice. Patterns-of-care and outcome analysis. J Thorac Oncol 8(8):1050–1058CrossRefPubMedGoogle Scholar
  3. 3.
    Cascales A, Martinetti F, Belemsagha D et al (2014) Challenges in the treatment of early non-small cell lung cancer: what is the standard, what are the challenges and what is the future for radiotherapy? Transl Lung Cancer Res 3(4):195–204PubMedPubMedCentralGoogle Scholar
  4. 4.
    Maquilan G, Timmerman R (2016) Stereotactic body radiation therapy for early-stage lung cancer. Cancer J 22(4):274–279CrossRefPubMedGoogle Scholar
  5. 5.
    Chang JY, Senan S, Paul MA et al (2015) Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 16(6):630–637CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Guckenberger M, Klement RJ, Allgäuer M et al (2016) Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy. Radiother Oncol 118(3):485–491CrossRefPubMedGoogle Scholar
  7. 7.
    Guckenberger M, Andratschke N, Alheit H et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33CrossRefPubMedGoogle Scholar
  8. 8.
    Büther F, Ernst I, Dawood M et al (2010) Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography. Eur J Nucl Med Mol Imaging 37(12):2315–2327CrossRefPubMedGoogle Scholar
  9. 9.
    ICRU (1993) Prescribing, recording and reporting photon beam therapy. J ICRU os26(1):NP (ICRU Report 50)Google Scholar
  10. 10.
    ICRU (1999) Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). J ICRU os32(1):NP (ICRU Report 62)Google Scholar
  11. 11.
    ICRU (2010) Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU 10(1):NP (ICRU Report 83)Google Scholar
  12. 12.
    van’t Riet A, Mak AC, Moerland MA et al (1997) A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys 37(3):731–736CrossRefGoogle Scholar
  13. 13.
    Knöös T, Kristensen I, Nilsson P (1998) Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys 42(5):1169–1176CrossRefPubMedGoogle Scholar
  14. 14.
    Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93(Suppl 3):219–222PubMedGoogle Scholar
  15. 15.
    Lomax NJ, Scheib SG (2003) Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 55(5):1409–1419CrossRefPubMedGoogle Scholar
  16. 16.
    Wagner TH, Bova FJ, Friedman WA et al (2003) A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int J Radiat Oncol Biol Phys 57(4):1141–1149CrossRefPubMedGoogle Scholar
  17. 17.
    Wu VW, Kwong DL, Sham JS (2004) Target dose conformity in 3‑dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother Oncol 71(2):201–206CrossRefPubMedGoogle Scholar
  18. 18.
    Van Gellekom MP, Moerland MA, Battermann JJ et al (2004) MRI-guided prostate brachytherapy with single needle method – a planning study. Radiother Oncol 71(3):327–332CrossRefPubMedGoogle Scholar
  19. 19.
    Kataria T, Sharma K, Subramani V et al (2012) Homogeneity Index: An objective tool for assessment of conformal radiation treatments. J Med Phys 37(4):207–213CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Haverkamp U, Norkus D, Kriz J et al (2014) Optimization by visualization of indices. Strahlenther Onkol 190(11):1053–1059CrossRefPubMedGoogle Scholar
  21. 21.
    Blanck O, Wang L, Baus W et al (2016) Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 17(3):6151CrossRefGoogle Scholar
  22. 22.
    Song DY, Kavanagh BD, Benedict SH et al (2004) Stereotactic body radiation therapy. Rationale, techniques, applications, and optimization. Oncology (Williston Park, NY) 18(11):1419–1430 (discussion 1430, 1432, 1435–6)Google Scholar
  23. 23.
    Giglioli FR, Strigari L, Ragona R et al (2016) Lung stereotactic ablative body radiotherapy: A large scale multi-institutional planning comparison for interpreting results of multi-institutional studies. Phys Med 32(4):600–606CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang GG, Ku L, Dilling TJ et al (2011) Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique. Radiat Oncol 6:152CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Holt A, van Vliet-Vroegindeweij C, Mans A et al (2011) Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys 81(5):1560–1567CrossRefPubMedGoogle Scholar
  26. 26.
    Atalar B, Aydin G, Gungor G et al (2012) Dosimetric comparison of robotic and conventional linac-based stereotactic lung irradiation in early-stage lung cancer. Technol Cancer Res Treat 11(3):249–255CrossRefPubMedGoogle Scholar
  27. 27.
    Weyh A, Konski A, Nalichowski A et al (2013) Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMRT. J Appl Clin Med Phys 14(4):4065CrossRefPubMedGoogle Scholar
  28. 28.
    Chan MK, Kwong DL, Law GM et al (2013) Dosimetric evaluation of four-dimensional dose distributions of CyberKnife and volumetric-modulated arc radiotherapy in stereotactic body lung radiotherapy. J Appl Clin Med Phys 14(4):4229PubMedGoogle Scholar
  29. 29.
    Andratschke N, Parys A, Stadtfeld S et al (2016) Clinical results of mean GTV dose optimized robotic guided SBRT for liver metastases. Radiat Oncol 11:74CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bibault JE, Mirabel X, Lacornerie T et al (2015) Adapted prescription dose for Monte Carlo algorithm in lung SBRT: clinical outcome on 205 patients. PLOS ONE 10(7):e0133617CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lacornerie T, Lisbona A, Mirabel X et al (2014) GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms. Radiat Oncol 9:223CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Grimm J, LaCouture T, Croce R et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368Google Scholar
  33. 33.
    Ojala JJ, Kapanen MK, Hyödynmaa SJ et al (2014) Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys 15(2):4662CrossRefPubMedGoogle Scholar
  34. 34.
    Zheng D, Zhu X, Zhang Q et al (2016) Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT. Radiat Oncol 11:83CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998CrossRefPubMedGoogle Scholar
  36. 36.
    Wang K, Eblan MJ, Deal AM et al (2017) Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol:JCO2016700229. doi: 10.1200/JCO.2016.70.0229
  37. 37.
    Keall PJ, Mageras GS, Balter JM et al (2016) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900CrossRefGoogle Scholar
  38. 38.
    Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Christos Moustakis
    • 1
    • 2
    Email author
  • Oliver Blanck
    • 3
    • 4
  • Fatemeh Ebrahimi Tazehmahalleh
    • 1
    • 5
  • Mark ka heng Chan
    • 3
  • Iris Ernst
    • 1
    • 2
  • Thomas Krieger
    • 6
  • Marciana-Nona Duma
    • 7
  • Markus Oechsner
    • 7
  • Ute Ganswindt
    • 8
  • Christian Heinz
    • 8
  • Horst Alheit
    • 9
  • Hilbert Blank
    • 9
  • Ursula Nestle
    • 10
  • Rolf Wiehle
    • 10
  • Christine Kornhuber
    • 11
  • Christian Ostheimer
    • 11
  • Cordula Petersen
    • 12
  • Gerhard Pollul
    • 13
  • Wolfgang Baus
    • 14
  • Georg Altenstein
    • 14
  • Eric Beckers
    • 15
  • Katrin Jurianz
    • 15
  • Florian Sterzing
    • 16
  • Matthias Kretschmer
    • 17
  • Heinrich Seegenschmiedt
    • 18
  • Torsten Maass
    • 18
  • Stefan Droege
    • 19
  • Ulrich Wolf
    • 20
  • Juergen Schoeffler
    • 21
  • Uwe Haverkamp
    • 1
    • 2
  • Hans Theodor Eich
    • 1
    • 2
  • Matthias Guckenberger
    • 22
  1. 1.Department of Radiation OncologyUniversity MuensterMünsterGermany
  2. 2.German CyberKnife CenterSoestGermany
  3. 3.Department of Radiation OncologyUKSH Universitätsklinikum Schleswig HolsteinKielGermany
  4. 4.Güstrow and FrankfurtSaphir Radiosurgery CenterFrankfurtGermany
  5. 5.City Hospital DessauDessauGermany
  6. 6.Department of Radiation OncologyUniversity of WuerzburgWuerzburgGermany
  7. 7.Department of Radiation Oncology, Klinikum rechts der IsarTechnical University of MunichMunichGermany
  8. 8.Department of Radiation OncologyLudwig-Maximilians-UniversityMunichGermany
  9. 9.Radiationtherapy DistlerBautzenGermany
  10. 10.Department of Radiation OncologyUniversity Medical Center FreiburgFreiburgGermany
  11. 11.Department of Radiation OncologyUniversity HalleHalleGermany
  12. 12.University Hospital Hamburg-EppendorfHamburgGermany
  13. 13.Department of Radiation OncologyUniversity MainzMainzGermany
  14. 14.University Hospital of CologneCologneGermany
  15. 15.Gamma Knife Center KrefeldKrefeldGermany
  16. 16.University Hospital HeidelbergHeidelbergGermany
  17. 17.Radiologische Allianz HamburgHamburgGermany
  18. 18.Radiationtherapy and Cyberknife Center HamburgHamburgGermany
  19. 19.Lung Clinic HemerHemerGermany
  20. 20.Department of Radiation OncologyUniversity LeipzigLeipzigGermany
  21. 21.Radiationtherapy Department BoeblingenBoeblingenGermany
  22. 22.Department of Radiation OncologyUniversity ZurichZurichSwitzerland

Personalised recommendations