Skip to main content

Advertisement

Log in

The impact of androgen deprivation therapy on setup errors during external beam radiation therapy for prostate cancer

Einfluss der Androgendeprivationstherapie auf Konfigurationsfehler bei der externen Strahlentherapie des Prostatakarzinoms

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To determine whether setup errors during external beam radiation therapy (RT) for prostate cancer are influenced by the combination of androgen deprivation treatment (ADT) and RT.

Materials and methods

Data from 175 patients treated for prostate cancer were retrospectively analyzed. Treatment was as follows: concurrent ADT plus RT, 33 patients (19%); neoadjuvant and concurrent ADT plus RT, 91 patients (52%); RT only, 51 patients (29%). Required couch shifts without rotations were recorded for each megavoltage (MV) cone beam computed tomography (CBCT) scan, and corresponding alignment shifts were recorded as left–right (x), superior–inferior (y), and anterior–posterior (z). The nonparametric Mann–Whitney test was used to compare shifts by group. Pearson’s correlation coefficient was used to measure the correlation of couch shifts between groups. Mean prostate shifts and standard deviations (SD) were calculated and pooled to obtain mean or group systematic error (M), SD of systematic error (Σ), and SD of random error (σ).

Results

No significant differences were observed in prostate shifts in any direction between the groups. Shifts on CBCT were all less than setup margins. A significant positive correlation was observed between prostate volume and the z‑direction prostate shift (r = 0.19, p = 0.04), regardless of ADT group, but not between volume and x‑ or y‑direction shifts (r = 0.04, p = 0.7; r = 0.03, p = 0.7). Random and systematic errors for all patient cohorts and ADT groups were similar.

Conclusion

Hormone therapy given concurrently with RT was not found to significantly impact setup errors. Prostate volume was significantly correlated with shifts in the anterior–posterior direction only.

Zusammenfassung

Ziel

Ziel war zu untersuchen, ob Konfigurationsfehler bei der externen Radiotherapie (RT) des Prostatakarzinoms durch die Kombination aus Androgendeprivationstherapie (ADT) und RT beeinflusst werden.

Material und Methoden

Retrospektiv wurden die Daten von 175 wegen eines Prostatakarzinoms behandelten Patienten ausgewertet. Die Therapie erfolgte als gleichzeitige ADT plus RT, 33 Patienten (19%); neoadjuvante und gleichzeitige ADT plus RT, 91 Patienten (52%); RT allein, 51 Patienten (29%). Die erforderlichen Verschiebungen der Patientenliege ohne Rotation wurden für jede Megavolt-Cone-Beam-Computertomographie(MV-CBCT)-Aufnahme dokumentiert und die entsprechenden Verschiebungen im Rahmen der Ausrichtung erfasst als links–rechts (x), superior–inferior (y) und anterior–posterior (z). Um die Verschiebungen pro Gruppe zu vergleichen, wurde der nichtparametrische Mann-Whitney-Test eingesetzt. Der Korrelationskoeffizient nach Pearson diente dazu, die Korrelation der Verschiebungen der Patientenliege zwischen den Gruppen zu ermitteln. Die mittleren Verschiebungen der Prostata und Standardabweichungen („standard deviations“, SD) wurden berechnet und zusammengefasst, um den mittleren bzw. gruppenbezogenen systematischen Fehler (M) zu erhalten, die SD des systematischen Fehlers (Σ) und die SD des Zufallsfehlers (σ).

Ergebnisse

Es wurden keine signifikanten Unterschiede bei den Prostataverschiebungen jeglicher Richtung für alle Gruppen festgestellt. Die Verschiebungen in der CBCT waren alle geringer als die Konfigurationsgrenzwerte. Eine signifikante positive Korrelation wurde zwar, unabhängig von der ADT-Gruppe, zwischen dem Prostatavolumen und der Prostataverschiebung in z‑Richtung beobachtet (r = 0,19; p = 0,04), nicht aber zwischen dem Volumen der Verschiebung in x‑ oder y‑Richtung (r = 0,04; p = 0,7; r = 0,03; p = 0,7). Zufalls- und systematischer Fehler für alle Patientenkohorten und ADT-Gruppen waren ähnlich.

Schlussfolgerung

Für die gleichzeitige Therapie mit Hormonen und RT wurde kein signifikanter Einfluss auf Konfigurationsfehler festgestellt. Das Prostatavolumen war nur signifikant mit Verschiebungen in Richtung anterior–posterior korreliert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Button MR, Staffurth JN (2010) Clinical application of image-guided radiotherapy in bladder and prostate cancer. Clin Oncol (R Coll Radiol) 22(8):698–706

    Article  CAS  Google Scholar 

  2. Peeters ST, Lebesque JV, Heemsbergen WD et al (2006) Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 64(4):1151–1161

    Article  PubMed  Google Scholar 

  3. Ten Haken RK, Forman JD, Heimburger DK et al (1991) Treatment planning issues related to prostate movement in response to differential filling of the rectum and bladder. Int J Radiat Oncol Biol Phys 20(6):1317–1324

    Article  CAS  PubMed  Google Scholar 

  4. Rudat V, Schraube P, Oetzel D et al (1996) Combined error of patient positioning variability and prostate motion uncertainty in 3D conformal radiotherapy of localized prostate cancer. Int J Radiat Oncol Biol Phys 35(5):1027–1034

    Article  CAS  PubMed  Google Scholar 

  5. Langen KM, Jones DT (2001) Organ motion and its management. Int J Radiat Oncol Biol Phys 50(1):265–278

    Article  CAS  PubMed  Google Scholar 

  6. Ghilezan MJ, Jaffray DA, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62(2):406–417

    Article  PubMed  Google Scholar 

  7. Morr J, DiPetrillo T, Tsai JS et al (2002) Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 53(5):1124–1129

    Article  PubMed  Google Scholar 

  8. Frank SJ, Dong L, Kudchadker RJ et al (2008) Quantification of prostate and seminal vesicle interfraction variation during IMRT. Int J Radiat Oncol Biol Phys 71(3):813–820

    Article  PubMed  Google Scholar 

  9. Welsh JS, Berta C, Borzillary S et al (2004) Fiducial markers implanted during prostate brachytherapy for guiding conformal external beam radiation therapy. Technol Cancer Res Treat 3(4):359–364

    Article  PubMed  Google Scholar 

  10. Dehnad H, Nederveen AJ, van der Heide UA et al (2003) Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation. Radiother Oncol 67(3):295–302

    Article  PubMed  Google Scholar 

  11. Snir JA, Battista JJ, Bauman G et al (2011) Evaluation of inter-fraction prostate motion using kilovoltage cone beam computed tomography during radiotherapy. Clin Oncol (R Coll Radiol) 23(9):625–631

    Article  CAS  Google Scholar 

  12. Bylund KC, Bayouth JE, Smith MC et al (2008) Analysis of interfraction prostate motion using megavoltage cone beam computed tomography. Int J Radiat Oncol Biol Phys 72(3):949–956

    Article  PubMed  Google Scholar 

  13. Ding GX, Duggan DM, Coffey CW et al (2007) A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol 85(1):116–125

    Article  PubMed  Google Scholar 

  14. Pilepich MV, Krall JM, al-Sarraf M et al (1995) Androgen deprivation with radiation therapy compared with radiation therapy alone for locally advanced prostatic carcinoma: a randomized comparative trial of the Radiation Therapy Oncology Group. Urology 45(4):616–623

    Article  CAS  PubMed  Google Scholar 

  15. Roach M 3rd, Bae K, Speight J et al (2008) Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol 26(4):585–591

    Article  PubMed  Google Scholar 

  16. Denham JW, Steigler A, Lamb DS et al (2011) Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol 12(5):451–459

    Article  CAS  PubMed  Google Scholar 

  17. Bolla M, Van Tienhoven G, Warde P et al (2010) External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol 11(11):1066–1073

    Article  CAS  PubMed  Google Scholar 

  18. Langenhuijsen JF, van Lin EN, Hoffmann AL et al (2011) Neoadjuvant androgen deprivation for prostate volume reduction: the optimal duration in prostate cancer radiotherapy. Urol Oncol 29(1):52–57

    Article  CAS  PubMed  Google Scholar 

  19. Onal C, Topkan E, Efe E et al (2009) The effect of concurrent androgen deprivation and 3D conformal radiotherapy on prostate volume and clinical organ doses during treatment for prostate cancer. Br J Radiol 82(984):1019–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tiberi DA, Carrier JF, Beauchemin MC et al (2012) Impact of concurrent androgen deprivation on fiducial marker migration in external-beam radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 84(1):e7–e12

    Article  PubMed  Google Scholar 

  21. Udrescu C, De Bari B, Rouviere O et al (2013) Does hormone therapy modify the position of the gold markers in the prostate during irradiation? A daily evaluation with kV-images. Cancer Radiother 17(3):215–220

    Article  CAS  PubMed  Google Scholar 

  22. D’Amico AV (2011) Risk-based management of prostate cancer. N Engl J Med 365(2):169–171

    Article  PubMed  Google Scholar 

  23. Onal C, Sonmez S, Erbay G et al (2014) Simultaneous integrated boost to intraprostatic lesions using different energy levels of intensity-modulated radiotherapy and volumetric-arc therapy. Br J Radiol 87(1034):20130617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Onal C, Arslan G, Parlak C et al (2014) Comparison of IMRT and VMAT plans with different energy levels using Monte-Carlo algorithm for prostate cancer. Jpn J Radiol 32(4):224–232

    Article  PubMed  Google Scholar 

  25. Harris VA, Staffurth J, Naismith O et al (2015) Consensus guidelines and contouring atlas for pelvic node delineation in prostate and pelvic node intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 92(4):874–883

    Article  PubMed  Google Scholar 

  26. Onal C, Topkan E, Efe E et al (2009) Comparison of rectal volume definition techniques and their influence on rectal toxicity in patients with prostate cancer treated with 3D conformal radiotherapy: a dose-volume analysis. Radiat Oncol 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  27. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317

    Article  PubMed  Google Scholar 

  28. Topkan E, Tufan H, Yavuz AA et al (2008) Comparison of the protective effects of melatonin and amifostine on radiation-induced epiphyseal injury. Int J Radiat Biol 84(10):796–802

    Article  CAS  PubMed  Google Scholar 

  29. van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol 14(1):52–64

    Article  PubMed  Google Scholar 

  30. Parker BC, Shiu AS, Maor MH et al (2002) PTV margin determination in conformal SRT of intracranial lesions. J Appl Clin Med Phys 3(3):176–189

    Article  PubMed  Google Scholar 

  31. Jaffray DA (2012) Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 9(12):688–699

    Article  CAS  PubMed  Google Scholar 

  32. Jaffray DA, Siewerdsen JH, Wong JW et al (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53(5):1337–1349

    Article  PubMed  Google Scholar 

  33. Martinez F, Romero E, Drean G et al (2014) Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector. Phys Med Biol 59(6):1471–1484

    Article  PubMed  PubMed Central  Google Scholar 

  34. Held M, Cremers F, Sneed PK et al (2016) Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments. J Appl Clin Med Phys 17(2):6040

    Article  PubMed  Google Scholar 

  35. Bolla M, de Reijke TM, Van Tienhoven G et al (2009) Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med 360(24):2516–2527

    Article  CAS  PubMed  Google Scholar 

  36. Horwitz EM, Bae K, Hanks GE et al (2008) Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol 26(15):2497–2504

    Article  CAS  PubMed  Google Scholar 

  37. Pilepich MV, Winter K, Lawton CA et al (2005) Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma – long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys 61(5):1285–1290

    Article  CAS  PubMed  Google Scholar 

  38. Mohler JL, Armstrong AJ, Bahnson RR et al (2012) Prostate cancer, Version 3.2012: featured updates to the NCCN guidelines. J Natl Compr Canc Netw 10(9):1081–1087

    Article  CAS  PubMed  Google Scholar 

  39. van Haaren PM, Bel A, Hofman P et al (2009) Influence of daily setup measurements and corrections on the estimated delivered dose during IMRT treatment of prostate cancer patients. Radiother Oncol 90(3):291–298

    Article  PubMed  Google Scholar 

  40. Sanguineti G, Marcenaro M, Franzone P et al (2003) Neoadjuvant androgen deprivation and prostate gland shrinkage during conformal radiotherapy. Radiother Oncol 66(2):151–157

    Article  CAS  PubMed  Google Scholar 

  41. Onishi H, Kuriyama K, Komiyama T et al (2012) Large prostate motion produced by anal contraction. Radiother Oncol 104(3):390–394

    Article  PubMed  Google Scholar 

  42. Moseley DJ, White EA, Wiltshire KL et al (2007) Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 67(3):942–953

    Article  PubMed  PubMed Central  Google Scholar 

  43. Beldjoudi G, Yartsev S, Bauman G et al (2010) Schedule for CT image guidance in treating prostate cancer with helical tomotherapy. Br J Radiol 83(987):241–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ludbrook JJ, Greer PB, Blood P et al (2005) Correction of systematic setup errors in prostate radiation therapy: how many images to perform? Med Dosim 30(2):76–84

    Article  PubMed  Google Scholar 

  45. Prasad D, Das P, Saha NS et al (2014) Image guidance in prostate cancer – can offline corrections be an effective substitute for daily online imaging? J Cancer Res Ther 10(1):21–25

    Article  PubMed  Google Scholar 

  46. Schiller K, Petrucci A, Geinitz H et al (2014) Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer: a study of 2940 setup deviations in 980 MVCTs. Strahlenther Onkol 190(8):722–726

    Article  PubMed  Google Scholar 

  47. Rudat V, Nour A, Hammoud M et al (2016) Image-guided intensity-modulated radiotherapy of prostate cancer: analysis of interfractional errors and acute toxicity. Strahlenther Onkol 192(2):109–117

    Article  PubMed  Google Scholar 

  48. Oh YK, Baek JG, Kim OB et al (2014) Assessment of setup uncertainties for various tumor sites when using daily CBCT for more than 2200 VMAT treatments. J Appl Clin Med Phys 15(2):4418

    Article  PubMed  Google Scholar 

  49. Keros L, Bernier V, Aletti P et al (2006) Qualitative estimation of pelvic organ interactions and their consequences on prostate motion: study on a deceased person. Med Phys 33(6):1902–1910

    Article  PubMed  Google Scholar 

  50. Stasi M, Munoz F, Fiorino C et al (2006) Emptying the rectum before treatment delivery limits the variations of rectal dose – volume parameters during 3DCRT of prostate cancer. Radiother Oncol 80(3):363–370

    Article  PubMed  Google Scholar 

  51. McNair HA, Wedlake L, McVey GP et al (2011) Can diet combined with treatment scheduling achieve consistency of rectal filling in patients receiving radiotherapy to the prostate? Radiother Oncol 101(3):471–478

    Article  PubMed  Google Scholar 

  52. Wolff D, Stieler F, Welzel G et al (2009) Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 93(2):226–233

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Onal MD.

Ethics declarations

Conflict of interest

C. Onal, Y. Dolek, and Y. Ozdemir declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onal, C., Dolek, Y. & Ozdemir, Y. The impact of androgen deprivation therapy on setup errors during external beam radiation therapy for prostate cancer. Strahlenther Onkol 193, 472–482 (2017). https://doi.org/10.1007/s00066-017-1131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1131-z

Keywords

Schlüsselwörter

Navigation