Skip to main content
Log in

Predictors for occlusion of cerebral AVMs following radiation therapy

Radiation dose and prior embolization, but not Spetzler–Martin grade

Prädiktoren für den Verschluss zerebraler arteriovenöser Malformationen nach Strahlentherapie

Strahlendosis und vorangegangene Embolisation, nicht jedoch der Spetzler-Martin-Grad

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Intracranial arteriovenous malformations (AVMs) may show a harmful development. AVMs are treated by surgery, embolization, or radiation therapy.

Objective

This study investigated obliteration rates and side effects in patients with AVMs treated by radiation therapy.

Methods

A total of 40 cases treated between 2005 and 2013 were analyzed. Single-dose stereotactic radiosurgery (SRS) was received by 13 patients and 27 received hypofractionated stereotactic radiation therapy (HSRT). In 20 patients, endovascular embolization had been performed prior to irradiation and 24 patients (60 %) had a history of previous intracranial hemorrhage.

Results

Treatment resulted in complete obliteration (CO) in 23/40 cases and partial obliteration in 8/40. CO was achieved in 85 % of patients receiving SRS compared to 44 % of those receiving HSRT. In the HSRT group, a first indication of an influence of AVM volume on obliteration rate was found. Equivalent 2 Gy fraction doses (EQD2) >70 Gy showed an obliteration rate of 50 %. Prior embolization was significantly associated with a higher portion of CO (p = 0.032). Median latency period (24.2 vs. 26 months) until CO was similar in both groups (SRS vs. HSRT). The rate of intracranial hemorrhage in patients with no prior bleeding events was 0 %.

Conclusion

Excellent obliteration rates were achieved by SRS. Consistent with the literature, this data analysis suggests that the results of HSRT are volume-dependent. Furthermore, regimens with EQD2 doses >70 Gy appear more likely to achieve obliteration than schemes with lower doses. The findings indicate that radiation therapy does not increase the risk of bleeding. Prior embolization may have a good prognostic impact.

Zusammenfassung

Hintergrund

Intrakranielle arteriovenöse Malformationen (AVM) können einen komplikationsbehafteten Verlauf zeigen. AVMs sind mittels Operation, Embolisation oder Strahlentherapie behandelbar.

Zielsetzung

Die Studie untersucht Obliterationsraten und Nebenwirkungen bestrahlter AVM-Patienten.

Methoden

Analysiert wurden 40 Fälle, die zwischen 2005 und 2013 behandelt wurden. Insgesamt 13 Patienten erhielten eine Einzeitradiochirurgie (SRS), 27 Patienten wurden hypofraktioniert-stereotaktisch behandelt (HSRT). Eine endovaskuläre Embolisation vor der Strahlentherapie erhielten 20 Patienten. Vor der Strahlentherapie hatten 60 % der Patienten bereits eine intrakranielle Blutung.

Ergebnisse

In 23/40 Fällen wurde eine komplette (CO) und in 8/40 eine partielle Obliteration erreicht. Ein CO wurde in 85 % der SRS-Patienten und in 44 % der HSRT-Patienten erreicht. In der HSRT-Gruppe fanden wir einen ersten Hinweis auf einen Einfluss der AVM-Volumina auf die Obliterationsraten. Eine EQD2-Analyse zeigte eine Obliterationsrate von 25 % bei 58,3 Gy und von 50 % bei Summendosen >70 Gy. Eine vorherige Embolisation war signifikant mit einem höheren CO-Anteil (p = 0,032) assoziiert. Die medianen Latenzzeiten (24,2 vs. 26 Monate) bis zur CO waren in beiden Gruppen (SRS vs. HSRT) ähnlich. Die Rate an intrakraniellen Blutungen bei Patienten ohne vorheriges Blutungsereignis lag bei 0 %.

Schlussfolgerung

Die SRS erzielte exzellente Obliterationsraten. Wie zu erwarten und übereinstimmend mit der Literatur, legt unsere Analyse nahe, dass die Ergebnisse der HSRT offenbar volumenabhängig sind. Regime mit EQD2-Dosen >70 Gy scheinen eher zu einer Obliteration zu führen als Konzepte mit EQD2-Dosen von 58 Gy. Zudem erhöht die Strahlentherapie das Blutungsrisiko nicht. Eine vorherige Embolisation hat möglicherweise einen positiven Effekt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stapf C, Mast H, Sciacca RR, Choi JH, Khaw AV, Connolly ES et al (2006) Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 66:1350–1355

    Article  CAS  PubMed  Google Scholar 

  2. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR et al (2014) Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 383:614–621

    Article  CAS  PubMed  Google Scholar 

  3. Hernesniemi JA, Dashti R, Juvela S, Vaart K, Niemela M, Laakso A (2008) Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery 63:823–831

    Article  PubMed  Google Scholar 

  4. Mast H, Young WL, Koennecke HC, Sciacca RR, Osipov A, Pile-Spellman J et al (1997) Risk of spontaneous haemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet 350:1065–1068

    Article  CAS  PubMed  Google Scholar 

  5. Treuer H, Hoevels M, Luyken K, Visser-Vandewalle V, Wirths J, Kocher M et al (2015) Intracranial stereotactic radiosurgery with an adapted linear accelerator vs. robotic radiosurgery: Comparison of dosimetric treatment plan quality. Strahlenther Onkol 191:470–476

    Article  PubMed  Google Scholar 

  6. Fuetsch M, El Majdoub F, Hoevels M, Muller RP, Sturm V, Maarouf M (2012) Stereotactic LINAC radiosurgery for the treatment of brainstem cavernomas. Strahlenther Onkol 188:311–316

    Article  CAS  PubMed  Google Scholar 

  7. Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD (1996) A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 36:873–879

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto Y, Coffey RJ, Nichols DA, Shaw EG (1995) Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg 83:832–837

    Article  CAS  PubMed  Google Scholar 

  9. Wang H‑C, Chang RJ, Xiao F (2012) Hypofractionated stereotactic radiotherapy for large arteriovenous malformations. Surg Neurol Int 3:S105–S110

    PubMed  PubMed Central  Google Scholar 

  10. Levegrun S, Hof H, Essig M, Schlegel W, Debus J (2004) Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: dose/volume-response relations. Strahlenther Onkol 180:758–767

    Article  PubMed  Google Scholar 

  11. Fokas E, Henzel M, Wittig A, Grund S, Engenhart-Cabillic R (2013) Stereotactic radiosurgery of cerebral arteriovenous malformations: long-term follow-up in 164 patients of a single institution. J Neurol 260:2156–2162

    Article  PubMed  Google Scholar 

  12. Kano H, Lunsford LD, Flickinger JC, Yang H‑C, Flannery TJ, Awan NR et al (2012) Stereotactic radiosurgery for arteriovenous malformations, Part 1: management of Spetzler-Martin Grade I and II arteriovenous malformations. J Neurosurg 116:11–20

    Article  PubMed  Google Scholar 

  13. Chang T‑C, Shirato H, Aoyama H, Ushikoshi S, Kato N, Kuroda S et al (2004) Stereotactic irradiation for intracranial arteriovenous malformation using stereotactic radiosurgery or hypofractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 60:861–870

    Article  PubMed  Google Scholar 

  14. Aoyama H, Shirato H, Nishioka T, Kagei K, Onimaru R, Suzuki K et al (2001) Treatment outcome of single or hypofractionated single-isocentric stereotactic irradiation (STI) using a linear accelerator for intracranial arteriovenous malformation. Radiother Oncol 59:323–328

    Article  CAS  PubMed  Google Scholar 

  15. Pollock BE, Link MJ, Stafford SL, Garces YI, Foote RL (2016) Stereotactic Radiosurgery for Arteriovenous Malformations: The Effect of Treatment Period on Patient Outcomes. Neurosurgery 78(4):499–509. doi:10.1227/neu.0000000000001085

    Article  PubMed  Google Scholar 

  16. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (2002) An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 63:347–354

    Article  PubMed  Google Scholar 

  17. Cetin IA, Ates R, Dhaens J, Storme G (2012) Retrospective analysis of linac-based radiosurgery for arteriovenous malformations and testing of the Flickinger formula in predicting radiation injury. Strahlenther Onkol 188:1133–1138

    Article  CAS  PubMed  Google Scholar 

  18. Karlsson B, Lindqvist M, Blomgren H, Wan-Yeo G, Soderman M, Lax I et al (2005) Long-term results after fractionated radiation therapy for large brain arteriovenous malformations. Neurosurgery 57:42–49

    Article  PubMed  Google Scholar 

  19. Zabel-du Bois A, Milker-Zabel S, Huber P, Schlegel W, Debus J (2006) Linac-based radiosurgery or hypofractionated stereotactic radiotherapy in the treatment of large cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys 64:1049–1054

    Article  PubMed  Google Scholar 

  20. Veznedaroglu E, Andrews DW, Benitez RP, Downes MB, Werner-Wasik M, Rosenstock J et al (2004) Fractionated stereotactic radiotherapy for the treatment of large arteriovenous malformations with or without previous partial embolization. Neurosurgery 55:519–511

    Article  PubMed  Google Scholar 

  21. Xiao F, Gorgulho AA, Lin C‑S, Chen C‑H, Agazaryan N, Vinuela F et al (2010) Treatment of giant cerebral arteriovenous malformation: hypofractionated stereotactic radiation as the first stage. Neurosurgery 67:1253–1259

    Article  PubMed  Google Scholar 

  22. Lindvall P, Bergstrom P, Blomquist M, Bergenheim AT (2010) Radiation schedules in relation to obliteration and complications in hypofractionated conformal stereotactic radiotherapy of arteriovenous malformations. Stereotact Funct Neurosurg 88:24–28

    Article  PubMed  Google Scholar 

  23. Kano H, Kondziolka D, Flickinger JC, Park K‑J, Parry PV, Yang H‑C et al (2013) Multistaged volumetric management of large arteriovenous malformations. Prog Neurol Surg 27:73–80

    Article  PubMed  Google Scholar 

  24. Seymour ZA, Sneed PK, Gupta N, Lawton MT, Molinaro AM, Young W et al (2016) Volume-staged radiosurgery for large arteriovenous malformations: an evolving paradigm. J Neurosurg 124:163–174

    Article  PubMed  Google Scholar 

  25. Andrade-Souza YM, Ramani M, Scora D, Tsao MN, terBrugge K, Schwartz ML (2007) Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery 60:443–442

    Article  PubMed  Google Scholar 

  26. Kano H, Kondziolka D, Flickinger JC, Park K‑J, Iyer A, Yang H‑C et al (2013) Stereotactic radiosurgery after embolization for arteriovenous malformations. Prog Neurol Surg 27:89–96

    Article  PubMed  Google Scholar 

  27. Back AG, Vollmer D, Zeck O, Shkedy C, Shedden PM (2008) Retrospective analysis of unstaged and staged Gamma Knife surgery with and without preceding embolization for the treatment of arteriovenous malformations. J Neurosurg 109(Suppl):57–64

    PubMed  Google Scholar 

  28. Schwyzer L, Yen C‑P, Evans A, Zavoian S, Steiner L (2012) Long-term results of gamma knife surgery for partially embolized arteriovenous malformations. Neurosurgery 71:1139–1138

    Article  PubMed  Google Scholar 

  29. Oermann EK, Ding D, Yen C‑P, Starke RM, Bederson JB, Kondziolka D et al (2015) Effect of prior embolization on cerebral arteriovenous malformation radiosurgery outcomes: A case-control study. Neurosurgery 77:406–417

    Article  PubMed  Google Scholar 

  30. Izawa M, Chernov M, Hayashi M, Iseki H, Hori T, Takakura K (2009) Combined management of intracranial arteriovenous malformations with embolization and gamma knife radiosurgery: comparative evaluation of the long-term results. Surg Neurol 71:43–43

    Article  PubMed  Google Scholar 

  31. Lindvall P, Wikholm G, Bergstrom P, Lofroth P, Bergenheim AT (2005) Combined effects of embolization and hypofractionated conformal stereotactic radiotherapy in arteriovenous malformations of the brain. Interv Neuroradiol 11:223–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nataraj A, Mohamed MB, Gholkar A, Vivar R, Watkins L, Aspoas R et al (2014) Multimodality treatment of cerebral arteriovenous malformations. World Neurosurg 82:149–159

    Article  PubMed  Google Scholar 

  33. Pierot L, Kadziolka K, Litre F, Rousseaux P (2013) Combined treatment of brain AVMs with use of Onyx embolization followed by radiosurgery. AJNR Am J Neuroradiol 34:1395–1400

    Article  CAS  PubMed  Google Scholar 

  34. Lee C‑C, Chen C‑J, Ball B, Schlesinger D, Xu Z, Yen C‑P et al (2015) Stereotactic radiosurgery for arteriovenous malformations after Onyx embolization: a case-control study. J Neurosurg 123:126–135

    Article  PubMed  Google Scholar 

  35. Laakso A, Dashti R, Seppanen J, Juvela S, Vaart K, Niemela M et al (2008) Long-term excess mortality in 623 patients with brain arteriovenous malformations. Neurosurgery 63:244–245

    Article  PubMed  Google Scholar 

  36. Yen CP, Varady P, Sheehan J, Steiner M, Steiner L (2007) Subtotal obliteration of cerebral arteriovenous malformations after gamma knife surgery. J Neurosurg 106:361–369

    Article  PubMed  Google Scholar 

  37. Karlsson B, Lindquist C, Steiner L (1996) Effect of Gamma Knife surgery on the risk of rupture prior to AVM obliteration. Minim Invasive Neurosurg 39:21–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Knippen.

Ethics declarations

Conflict of interest

S. Knippen, F. Putz, S. Semrau, U. Lambrecht, A. Knippen, M. Buchfelder, S. Schlaffer, T. Struffert, and R. Fietkau declare that they have no competing interests.

Ethical standards

All procedures performed were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments. For this retrospective study, formal consent was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knippen, S., Putz, F., Semrau, S. et al. Predictors for occlusion of cerebral AVMs following radiation therapy. Strahlenther Onkol 193, 185–191 (2017). https://doi.org/10.1007/s00066-016-1056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1056-y

Keywords

Schlüsselwörter

Navigation