Skip to main content
Log in

Novel technique for high-precision stereotactic irradiation of mouse brains

Neuartige Bestrahlungsmethode für stereotaktische Hochpräzisionsbestrahlung von Maushirnen

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Small animal irradiation systems were developed for preclinical evaluation of tumor therapy closely resembling the clinical situation. Mostly only clinical LINACs are available, so protocols for small animal partial body irradiation using a conventional clinical system are essential. This study defines a protocol for conformal brain tumor irradiations in mice.

Materials and methods

CT and MRI images were used to demarcate the target volume and organs at risk. Three 6 MV photon beams were planned for a total dose of 10 fractions of 1.8 Gy. The mouse position in a dedicated applicator was verified by an X‑ray patient positioning system before each irradiation. Dosimetric verifications (using ionization chambers and films) were performed. Irradiation-induced DNA damage was analyzed to verify the treatment effects on the cellular level.

Results

The defined treatment protocol and the applied fractionation scheme were feasible. The in-house developed applicator was suitable for individual positioning at submillimeter accuracy of anesthetized mice during irradiation, altogether performed in less than 10 min. All mice tolerated the treatment well. Measured dose values perfectly matched the nominal values from treatment planning. Cellular response was restricted to the target volume.

Conclusion

Clinical LINAC-based irradiations of mice offer the potential to treat orthotopic tumors conformably. Especially with respect to lateral penumbra, dedicated small animal irradiation systems exceed the clinical LINAC solution.

Zusammenfassung

Hintergrund und Zielsetzung

Kleintierbestrahlungsanlagen wurden entwickelt um präklinische Studien in der Tumortherapie unter möglichst klinischen Bedingungen durchzuführen. Da an den meisten Instituten nur klinische LINACs zur Verfügung stehen, werden Standardprotokolle zur Kleintierbestrahlung benötigt, die konventionelle Systeme nutzen. In dieser Studie wird ein solches Protokoll für tumorkonforme Hirnbestrahlung von Mäusen definiert.

Materialien und Methoden

CT- und MRT-Bilder wurden aufgenommen, um Zielvolumen und Risikostrukturen festzulegen. Drei 6‑MV-Photonenfelder wurden auf eine Gesamtdosis von 10 × 1,8 Gy optimiert. Die Lage der Maus innerhalb eines selbstentwickelten Applikators wurde anhand eines Patientenpositionierungssystems vor jeder Bestrahlung verifiziert. Strahlungseffekte wurden dosimetrisch mittels Ionisationskammern und Filmen als auch biologisch auf zellulärer Ebene überprüft.

Ergebnisse

Das definierte Bestrahlungsprotokoll und das applizierte Fraktionierungsschema konnten erfolgreich angewendet werden. Mit Hilfe des eigens entwickelten Applikators wurde eine individuelle und millimetergenaue Positionierung der narkotisierten Mäuse für die Bestrahlung erreicht. Positionierung und Bestrahlung dauerten weniger als 10 min und wurden von allen Mäusen toleriert. Die berechneten Werte aus dem Planungssystem stimmten mit den gemessenen Dosiswerten überein und zeigten auf das Zielvolumen begrenzte zelluläre Effekte.

Schlussfolgerung

Mittels klinischer LINACs können orthotopische Tumore von Mäusen konform bestrahlt werden. Im Hinblick auf die laterale Penumbra sind jedoch Kleintierbestrahlungsanlagen überlegen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tillner F, Thute P, Buetof R, Krause M, Enghardt W (2014) Pre-clinical research in small animals using radiotherapy technology – a bidirectional translational approach. Z Med Phys 24(4):335–351. doi:10.1016/j.zemedi.2014.07.004

    Article  PubMed  Google Scholar 

  2. Kuess P, Bozsaky E, Hopfgartner J, Seifritzl G, Doerr W, Georg D (2014) Dosimetric challenges of small animal irradiation with a commercial X‑ray unit. Z Med Phys 24(4):363–372. doi:10.1016/j.zemedi.2014.08.005

    Article  PubMed  Google Scholar 

  3. Frenzel T, Grohmann C, Schumacher U, Kruell A (2014) Partial body irradiation of small laboratory animals with an industrial X‑ray tube. Z Med Phys 24(4):352–362. doi:10.1016/j.zemedi.2014.02.002

    Article  PubMed  Google Scholar 

  4. Derer A, Frey B, Fietkau R, Gaipl US (2015) Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother. doi:10.1007/s00262-015-1771-8

    PubMed  Google Scholar 

  5. De Ryck T, Van Impe A, Vanhoecke BW, Heyerick A, Vakaet L, De Neve W, Muller D, Schmidt M, Dorr W, Bracke ME (2015) 8‑prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis : cell culture and murine model. Strahlenther Onkol 191(5):429–436. doi:10.1007/s00066-014-0782-2

    Article  PubMed  Google Scholar 

  6. Muth C, Rubner Y, Semrau S, Ruhle PF, Frey B, Strnad A, Buslei R, Fietkau R, Gaipl US (2015) Primary glioblastoma multiforme tumors and recurrence: comparative analysis of the danger signals HMGB1, HSP70, and calreticulin. Strahlenther Onkol. doi:10.1007/s00066-015-0926-z

    PubMed  Google Scholar 

  7. Clarkson R, Lindsay PE, Ansell S, Wilson G, Jelveh S, Hill RP, Jaffray DA (2011) Characterization of image quality and image-guidance performance of a preclinical microirradiator. Med Phys 38(2):845–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong J, Armour E, Kazanzides P, Iordachita U, Tryggestad E, Deng H, Matinfar M, Kennedy C, Liu ZJ, Chan T, Gray O, Verhaegen F, McNutt T, Ford E, DeWeese TL (2008) High-resolution, small animal radiation research platform with X‑ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71(5):1591–1599. doi:10.1016/j.ijrobp.2008.04.025

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tillner F, Hietschold V, Khaless A, Pawelke J, Thute P, Enghardt W (2010) Characterization and optimization of the imaging and dosimetric properties of a image-guided precision irradiation device for small animals. Strahlenther Onkol 186:105–105

    Google Scholar 

  10. Yoshizumi T, Brady SL, Robbins ME, Bourland JD (2011) Specific issues in small animal dosimetry and irradiator calibration. Int J Radiat Biol 87(10):1001–1010. doi:10.3109/09553002.2011.556178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Felix MC, Fleckenstein J, Kirschner S, Hartmann L, Wenz F, Brockmann MA, Glatting G, Giordano FA (2015) Image-guided radiotherapy using a modified industrial Micro-CT for preclinical applications. PLoS ONE 10(5):11. doi:10.1371/journal.pone.0126246

    Article  Google Scholar 

  12. Wang W‑C, Liang S‑L, Chen Y‑K, Lin L‑M (2008) The therapeutic effect of fractionated radiation on DMBA-induced hamster buccal pouch squamous cell carcinomas. Oral Oncol 44:1160–1166. doi:10.1016/j.oraloncology.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  13. Song KH, Pidikiti R, Stojadinovic S, Speiser M, Seliounine S, Saha D, Solberg TD (2010) An x‑ray image guidance system for small animal stereotactic irradiation. Phys Med Biol 55(23):7345–7362. doi:10.1088/0031-9155/55/23/011

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez M, Zhou H, Keall P, Graves E (2009) Commissioning of a novel microCT/RT system for small animal conformal radiotherapy. Phys Med Biol 54(12):3727–3740. doi:10.1088/0031-9155/54/12/008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Verhaegen F, van Hoof S, Granton PV, Trani D (2014) A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies. Z Med Phys 24(4):323–334. doi:10.1016/j.zemedi.2014.02.004

    Article  PubMed  Google Scholar 

  16. Verhaegen F, Granton P, Tryggestad E (2011) Small animal radiotherapy research platforms. Phys Med Biol 56(12):R55–R83. doi:10.1088/0031-9155/56/12/r01

    Article  PubMed  Google Scholar 

  17. Stache C, Holsken A, Schlaffer SM, Hess A, Metzler M, Frey B, Fahlbusch R, Flitsch J, Buchfelder M, Buslei R (2015) Insights into the infiltrative behavior of adamantinomatous craniopharyngioma in a new xenotransplant mouse model. Brain Pathol 25(1):1–10. doi:10.1111/bpa.12148

    Article  CAS  PubMed  Google Scholar 

  18. Jin JY, Yin FF, Tenn SE, Medin PM, Solberg TD (2008) Use of the BrainLAB ExacTrac X‑Ray 6D system in image-guided radiotherapy. Med Dosim 33(2):124–134. doi:10.1016/j.meddos.2008.02.005

    Article  PubMed  Google Scholar 

  19. Mah LJ, El-Osta A, Karagiannis TC (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24(4):679–686. doi:10.1038/leu.2010.6

    Article  CAS  PubMed  Google Scholar 

  20. Stache C, Holsken A, Fahlbusch R, Flitsch J, Schlaffer SM, Buchfelder M, Buslei R (2014) Tight junction protein claudin-1 is differentially expressed in craniopharyngioma subtypes and indicates invasive tumor growth. Neuro-oncology 16(2):256–264. doi:10.1093/neuonc/not195

    Article  CAS  PubMed  Google Scholar 

  21. Low DA, Mutic S, Dempsey JF, Gerber RL, Bosch WR, Perez CA, Purdy JA (1998) Quantitative dosimetric verification of an IMRT planning and delivery system. Radiother Oncol 49(3):305–316

    Article  CAS  PubMed  Google Scholar 

  22. Gutmann DH, Hunter-Schaedle K, Shannon KM (2006) Harnessing preclinical mouse models to inform human clinical cancer trials. J Clin Invest 116(4):847–852. doi:10.1172/jci28271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee S‑H, Kim J‑Y, Lee K‑C, Nam J‑S, Choi J, Lee S‑H, Sung K‑H, Ahn S‑H (2014) Establishment of linear accelerator-based image guided radiotherapy for orthotopic 4T1 mouse mammary tumor model. Lab Anim Res 30:64–72. doi:10.5625/lar.2014.30.2.64

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bert C, Richter D, Durante M, Rietzel E (2012) Scanned carbon beam irradiation of moving films: comparison of measured and calculated response. Radiat Oncol 7:55. doi:10.1186/1748-717x-7-55

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bache ST, Juang T, Belley MD, Koontz BF, Adamovics J, Yoshizumi TT, Kirsch DG, Oldham M (2015) Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters. Med Phys 42(2):846–855. doi:10.1118/1.4905489

    Article  PubMed  PubMed Central  Google Scholar 

  26. Welch D, Harken AD, Randers-Pehrson G, Brenner DJ (2015) Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies. Phys Med Biol 60:3589–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The presented work was performed in partial fulfillment of the requirements for obtaining the degree Dr. rer. biol. hum. at the Friedrich-Alexander-Universität (JH, JW).

Funding

The presented work was funded in parts by the German Research Council (DFG) (KFO 214/2 (JW), BU 2878/2-1 (AH, RB)), the European Commission (DoReMi, European Atomic Energy Community’s Seventh Framework Programme (FP7/2007–2011) under Grant Agreement No. 249689) (BF, USG), the German Federal Ministry of Education and Research (BMBF; GREWIS, 02NUK017G), and the Bavarian Equal Opportunities Sponsorship—Förderung von Frauen in Forschung und Lehre (FFL)—Promoting Equal Opportunities for Women in Research and Teaching (AD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bert.

Ethics declarations

Conflict of interest

J. Hartmann, J. Wölfelschneider, C. Stache, R. Buslei, A. Derer, M. Schwarz, T. Bäuerle, R. Fietkau, U.S. Gaipl, C. Bert, A. Hölske, and B. Frey declare that they have no competing interests.

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

J. Hartmann and J. Wölfelschneider contributed equally to this work. A. Hölsken and B. Frey contributed equally as senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, J., Wölfelschneider, J., Stache, C. et al. Novel technique for high-precision stereotactic irradiation of mouse brains. Strahlenther Onkol 192, 806–814 (2016). https://doi.org/10.1007/s00066-016-1014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1014-8

Keywords

Schlüsselwörter

Navigation