Skip to main content


Log in

Radiotherapy of indolent orbital lymphomas

Two radiation concepts

Radiotherapie indolenter Orbitalymphome

Zwei Bestrahlungskonzepte

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript



The aim of this work was to retrospectively analyze efficacy, toxicity, and relapse rates of conventional (CRT) and low-dose radiotherapy (LDRT) in patients with indolent orbital lymphomas.

Patients and methods

From 1987–2014, 45 patients (median age 64 years) with 52 lesions of indolent orbital lymphomas were treated with CRT (median dose 36 Gy, range 26–46 Gy) and 7 patients (median age 75 years) with 8 lesions were treated with LDRT (2 fractions of  2.0 Gy).


Median follow-up was 133 months (range 2–329 months) in the CRT group and 25 months (range 10–41 months) in the LDRT group. Overall response rates were 97.7 % (CRT) and 100 % (LDRT). The 2‑ and 5‑year local progression-free survival (PFS) rates were 93.5 and 88.6 %, distant PFS 95.0 and 89.9 %, and overall survival 100 and 85.6 % after CRT. In the LDRT group, 2‑year local PFS and overall survival remained 100 %, respectively, and distant PFS 68.6 %. Acute radiotherapy-related complications (grades 1–2) were detected in virtually all eyes treated with CRT. Cataracts developed in only patients who were irradiated with more than 34 Gy. LDRT was well tolerated with only mild acute and late complications.


Primary radiotherapy of indolent orbital lymphomas is an effective treatment with high response rates and excellent local control in CRT and LDRT. In combination with close follow-up, LDRT may be an attractive alternative since re-irradiation even with conventional doses is still feasible.



Ziel der Arbeit war die Analyse von Effektivität, Nebenwirkungen und Rezidivraten nach konventioneller (CRT) und Niedrigdosisbestrahlung (LDRT) indolenter Orbitalymphome.

Patienten und Methoden

Retrospektiv evaluiert wurden 45 zwischen 1987 und 2014 behandelte Patienten (medianes Alter 64 Jahre) mit insgesamt 52 Läsionen indolenter Orbitalymphome, die mittels CRT (mediane Dosis 36 Gy, 26–46 Gy) therapiert wurden.; 7 Patienten mit insgesamt 8 Läsionen erhielten eine LDRT (2 × 2,0 Gy).


Das mediane Follow-Up betrug 133 Monate (2–239 Monate) in der CRT- und 25 Monate (10–41 Monate) in der LDRT-Gruppe. Die Ansprechraten lagen bei 97,7 % (CRT) bzw. 100 % (LDRT). Zwei bzw. fünf Jahre nach CRT betrug das lokal progressionsfreie Überleben (PFS) 93,5 bzw. 88,6 %, das distante PFS 95,0 bzw. 89,9 % und das Gesamtüberleben 100 bzw. 85,6 %. Zwei Jahre nach LDRT ließ sich ein lokales PFS und Gesamtüberleben von jeweils 100 % bei einem distanten PFS von 68,6 % beobachten. Akute Grad-1–2-Nebenwirkungen wurden nach CRT an fast allen bestrahlten Augen dokumentiert. Katarakte entstanden nur bei Patienten, die mit einer Dosis > 34 Gy behandelt wurden. Die LDRT wurde sehr gut vertragen und verursachte nur milde Nebenwirkungen.


Eine primäre und alleinige Radiatio bei indolenten Orbitalymphomen erwies sich als effektive Therapiemethode mit hohen Ansprechraten und ausgezeichneten lokalen Kontrollraten, sowohl nach Bestrahlung mit einer konventionellen Dosis als auch nach einer Radiotherapie mit 4 Gy. Da bei unzureichendem Ansprechen nach LDRT eine Re-Bestrahlung sogar in voller konventioneller Dosierung möglich ist, kann eine Niedrigdosisbestrahlung mit 4 Gy unter engmaschiger, bildmorphologischer Nachsorge bei indolenten Orbitalymphomen in Erwägung gezogen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  1. Freeman C, Berg JW, Cutler SJ (1972) Occurrence and prognosis of extranodal lymphomas. Cancer 29(1):252–260

    Article  CAS  PubMed  Google Scholar 

  2. Fitzpatrick PJ, Macko S (1984) Lymphoreticular tumors of the orbit. Int J Radiat Oncol Biol Phys 10(3):333–340

    Article  CAS  PubMed  Google Scholar 

  3. Margo CE, Mulla ZD (1998) Malignant tumors of the orbit. Analysis of the Florida Cancer Registry. Ophthalmology 105(1):185–190

    Article  CAS  PubMed  Google Scholar 

  4. Ferry JA, Fung CY, Zukerberg L, Lucarelli MJ, Hasserjian RP, Preffer FI, Harris NL (2007) Lymphoma of the ocular adnexa: A study of 353 cases. Am J Surg Pathol 31(2):170–184. doi:10.1097/01.pas.0000213350.49767.46

    Article  PubMed  Google Scholar 

  5. Fung CY, Tarbell NJ, Lucarelli MJ, Goldberg SI, Linggood RM, Harris NL, Ferry JA (2003) Ocular adnexal lymphoma: clinical behavior of distinct World Health Organization classification subtypes. Int J Radiat Oncol Biol Phys 57(5):1382–1391

    Article  PubMed  Google Scholar 

  6. Woolf DK, Ahmed M, Plowman PN (2012) Primary lymphoma of the ocular adnexa (orbital lymphoma) and primary intraocular lymphoma. Clin Oncol (R Coll Radiol) 24(5):339–344. doi:10.1016/j.clon.2012.03.001

    Article  CAS  Google Scholar 

  7. Ferreri AJ, Dolcetti R, Magnino S, Doglioni C, Ponzoni M (2009) Chlamydial infection: the link with ocular adnexal lymphomas. Nat Rev Clin Oncol 6(11):658–669. doi:10.1038/nrclinonc.2009.147

    Article  PubMed  Google Scholar 

  8. Ferreri AJ, Ponzoni M, Guidoboni M, De Conciliis C, Resti AG, Mazzi B, Lettini AA, Demeter J, Dell’Oro S, Doglioni C, Villa E, Boiocchi M, Dolcetti R (2005) Regression of ocular adnexal lymphoma after Chlamydia psittaci-eradicating antibiotic therapy. J Clin Oncol 23(22):5067–5073. doi:10.1200/JCO.2005.07.083

    Article  PubMed  Google Scholar 

  9. Ferreri AJ, Guidoboni M, Ponzoni M, De Conciliis C, Dell’Oro S, Fleischhauer K, Caggiari L, Lettini AA, Dal Cin E, Ieri R, Freschi M, Villa E, Boiocchi M, Dolcetti R (2004) Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst 96(8):586–594

    Article  PubMed  Google Scholar 

  10. Cassoux N, Merle-Beral H, Leblond V, Bodaghi B, Milea D, Gerber S, Fardeau C, Reux I, Xuan KH, Chan CC, LeHoang P (2000) Ocular and central nervous system lymphoma: clinical features and diagnosis. Ocul Immunol Inflamm 8(4):243–250

    Article  CAS  PubMed  Google Scholar 

  11. Buggage RR, Chan CC, Nussenblatt RB (2001) Ocular manifestations of central nervous system lymphoma. Curr Opin Oncol 13(3):137–142

    Article  CAS  PubMed  Google Scholar 

  12. Schabet M (1999) Epidemiology of primary CNS lymphoma. J Neurooncol 43(3):199–201

    Article  CAS  PubMed  Google Scholar 

  13. Fakhrian K, Klemm S, Keller U, Bayer C, Riedl W, Molls M, Geinitz H (2012) Radiotherapy in stage I–III follicular non-Hodgkin lymphoma. Retrospective analysis of a series of 50 patients. Strahlenther Onkol 188(6):464–470. doi:10.1007/s00066-011-0057-0

    Article  CAS  PubMed  Google Scholar 

  14. Heinzelmann F, Engelhard M, Ottinger H, Bamberg M, Weinmann M (2010) Nodal follicular lymphoma: the role of radiotherapy for stages I and II. Strahlenther Onkol 186(4):191–196. doi:10.1007/s00066-010-2090-9

    Article  PubMed  Google Scholar 

  15. Le QT, Eulau SM, George TI, Hildebrand R, Warnke RA, Donaldson SS, Hoppe RT (2002) Primary radiotherapy for localized orbital MALT lymphoma. Int J Radiat Oncol Biol Phys 52(3):657–663 ([pii]) doi:10.1016/s0360-3016(01)02729-8

    Article  PubMed  Google Scholar 

  16. Bolek TW, Moyses HM, Marcus RB Jr., Gorden L 3rd, Maiese RL, Almasri NM, Mendenhall NP (1999) Radiotherapy in the management of orbital lymphoma. Int J Radiat Oncol Biol Phys 44(1):31–36 ([pii]) doi:10.1016/s0360-3016(98)00535-5

    Article  CAS  PubMed  Google Scholar 

  17. Stafford SL, Kozelsky TF, Garrity JA, Kurtin PJ, Leavitt JA, Martenson JA, Habermann TM (2001) Orbital lymphoma: radiotherapy outcome and complications. Radiother Oncol 59(2):139–144. doi:10.1016/s0167-8140(00)00328-5

    Article  CAS  PubMed  Google Scholar 

  18. Bischof M, Karagiozidis M, Krempien R, Treiber M, Neuhof D, Debus J, Zierhut D (2007) Radiotherapy for orbital lymphoma : outcome and late effects. Strahlenther Onkol 183(1):17–22. doi:10.1007/s00066-007-1627-z

    Article  PubMed  Google Scholar 

  19. Minehan KJ, Martenson JA Jr., Garrity JA, Kurtin PJ, Banks PM, Chen MG, Earle JD (1991) Local control and complications after radiation therapy for primary orbital lymphoma: a case for low-dose treatment. Int J Radiat Oncol Biol Phys 20(4):791–796. doi:10.1016/0360-3016(91)90025-y

    Article  CAS  PubMed  Google Scholar 

  20. Bhatia S, Paulino AC, Buatti JM, Mayr NA, Wen BC (2002) Curative radiotherapy for primary orbital lymphoma. Int J Radiat Oncol Biol Phys 54(3):818–823. doi:10.1016/s0360-3016(02)02966-8

    Article  PubMed  Google Scholar 

  21. Zhou P, Ng AK, Silver B, Li S, Hua L, Mauch PM (2005) Radiation therapy for orbital lymphoma. Int J Radiat Oncol Biol Phys 63(3):866–871. doi:10.1016/j.ijrobp.2005.03.005

    Article  PubMed  Google Scholar 

  22. Esik O, Ikeda H, Mukai K, Kaneko A (1996) A retrospective analysis of different modalities for treatment of primary orbital non-Hodgkin’s lymphomas. Radiother Oncol 38(1):13–18. doi:10.1016/0167-8140(95)01658-9

    Article  CAS  PubMed  Google Scholar 

  23. Ferrufino-Ponce ZK, Henderson BA (2006) Radiotherapy and cataract formation. Semin Ophthalmol 21(3):171–180. doi:10.1080/08820530500351728

    Article  PubMed  Google Scholar 

  24. Ainsbury EA, Bouffler SD, Dorr W, Graw J, Muirhead CR, Edwards AA, Cooper J (2009) Radiation cataractogenesis: a review of recent studies. Radiat Res 172(1):1–9. doi:10.1667/RR1688.1

    Article  CAS  PubMed  Google Scholar 

  25. Ganem G, Lambin P, Socie G, Girinsky T, Bosq J, Pico JL, Solal-Celigny P, Cosset JM (1994) Potential role for low dose limited-field radiation therapy (2 × 2 grays) in advanced low-grade non-Hodgkin’s lymphomas. Hematol Oncol 12(1):1–8

    Article  CAS  PubMed  Google Scholar 

  26. Haas RL, Poortmans P, de Jong D, Aleman BM, Dewit LG, Verheij M, Hart AA, van Oers MH, van der Hulst M, Baars JW, Bartelink H (2003) High response rates and lasting remissions after low-dose involved field radiotherapy in indolent lymphomas. J Clin Oncol 21(13):2474–2480. doi:10.1200/JCO.2003.09.542

    Article  CAS  PubMed  Google Scholar 

  27. Ganem G, Cartron G, Girinsky T, Haas RL, Cosset JM, Solal-Celigny P (2010) Localized low-dose radiotherapy for follicular lymphoma: history, clinical results, mechanisms of action, and future outlooks. Int J Radiat Oncol Biol Phys 78(4):975–982 (S0360-3016(10)00936-3 [pii]) doi:10.1016/j.ijrobp.2010.06.056

    Article  PubMed  Google Scholar 

  28. Russo AL, Chen YH, Martin NE, Vinjamoori A, Luthy SK, Freedman A, Michaelson EM, Silver B, Mauch PM, Ng AK (2013) Low-dose involved-field radiation in the treatment of non-hodgkin lymphoma: predictors of response and treatment failure. Int J Radiat Oncol Biol Phys 86(1):121–127. doi:10.1016/j.ijrobp.2012.12.024

    Article  PubMed  Google Scholar 

  29. Hoskin PJ, Kirkwood AA, Popova B, Smith P, Robinson M, Gallop-Evans E, Coltart S, Illidge T, Madhavan K, Brammer C, Diez P, Jack A, Syndikus I (2014) 4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): a randomised phase 3 non-inferiority trial. Lancet Oncol 15(4):457–463. doi:10.1016/S1470-2045(14)70036-1

    Article  PubMed  Google Scholar 

  30. Herfarth K, Konig L (2014) Radiation therapy (4 Gy vs. 24 Gy) in patients with indolent non-Hodgkins lymphoma: Results of the FORT Study. Strahlenther Onkol 190(11):1084–1085

    Article  PubMed  Google Scholar 

  31. Fasola CE, Jones JC, Huang DD, Le QT, Hoppe RT, Donaldson SS (2013) Low-dose radiation therapy (2 Gy x 2) in the treatment of orbital lymphoma. Int J Radiat Oncol Biol Phys 86(5):930–935. doi:10.1016/j.ijrobp.2013.04.035

    Article  PubMed  Google Scholar 

  32. Rodel F, Schaller U, Schultze-Mosgau S, Beuscher HU, Keilholz L, Herrmann M, Voll R, Sauer R, Hildebrandt G (2004) The induction of TGF-beta(1) and NF-kappaB parallels a biphasic time course of leukocyte/endothelial cell adhesion following low-dose X‑irradiation. Strahlenther Onkol 180(4):194–200. doi:10.1007/s00066-004-1237-y

    Article  PubMed  Google Scholar 

  33. Rodel F, Hofmann D, Auer J, Keilholz L, Rollinghoff M, Sauer R, Beuscher HU (2008) The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol 184(1):41–47. doi:10.1007/s00066-008-1776-8

    Article  PubMed  Google Scholar 

  34. Large M, Hehlgans S, Reichert S, Gaipl US, Fournier C, Rodel C, Weiss C, Rodel F (2015) Study of the anti-inflammatory effects of low-dose radiation: The contribution of biphasic regulation of the antioxidative system in endothelial cells. Strahlenther Onkol 191(9):742–749. doi:10.1007/s00066-015-0848-9

    Article  PubMed  Google Scholar 

  35. Knoops L, Haas R, de Kemp S, Majoor D, Broeks A, Eldering E, de Boer JP, Verheij M, van Ostrom C, de Vries A, van’t VL, de Jong D (2007) In vivo p53 response and immune reaction underlie highly effective low-dose radiotherapy in follicular lymphoma. Blood 110(4):1116–1122. doi:10.1182/blood-2007-01-067579

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Laila König.

Ethics declarations

Conflict of interest

L. König, R. Stade, J. Rieber, J. Debus, and K. Herfarth state that there are no conflicts of interest.

This analysis was carried out with the approval of the responsible ethics committee of the University of Heidelberg and in accordance with national law and the Helsinki Declaration in its current, revised form.

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, L., Stade, R., Rieber, J. et al. Radiotherapy of indolent orbital lymphomas. Strahlenther Onkol 192, 414–421 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: