Advertisement

Strahlentherapie und Onkologie

, Volume 191, Issue 12, pp 928–935 | Cite as

Metformin influences progression in diabetic glioblastoma patients

  • Sebastian AdebergEmail author
  • Denise Bernhardt
  • Semi Ben Harrabi
  • Tilman Bostel
  • Angela Mohr
  • Christian Koelsche
  • Christian Diehl
  • Stefan Rieken
  • Juergen Debus
Original Article

Abstract

Purpose

Changes in metabolism, including high glucose serum levels, seem to influence the initiation of malignancy as well as recurrence. Therefore, limiting the energy supply in tumor cells with the antidiabetic drug metformin might be a useful approach to inhibit glioma cell progression. However, little is known about the effects of endocrine disorders (e.g., diabetes mellitus, corticosteroid therapy, and metformin therapy) on progression and survival in primary glioblastoma patients.

Patients and methods

Between 2006 and 2013, 276 patients with primary glioblastoma underwent radiation therapy at Heidelberg University Hospital and German Cancer Research Center. Clinical records as well as pretherapeutic and follow-up magnetic resonance (MR) images were assessed. Forty patients (14.5 %) were identified with a pretherapeutic history of diabetes, and 20 (50 %) of them were treated with metformin. Survival and correlations were calculated using t-test and log-rank, univariate and multivariate Cox proportional hazards ratio analyses.

Results

Persistent mild and excessive hyperglycemia were correlated with decreased survival. Corticosteroid therapy was associated with decreased progression-free and overall survival in the multivariate analysis. No negative influence of diabetes on progression and survival could be detected. Interestingly, diabetic patients with metformin therapy demonstrated prolonged progression-free intervals.

Conclusion

Corticosteroid therapy and hyperglycemia were strongly associated with impaired survival rates and serves as negative prognostic factors. Diabetes did not influence survival. Interestingly, our findings showed an association of metformin therapy and prolonged progression-free survival in glioblastoma patients with diabetes and therefore serve as a foundation for further preclinical and clinical investigations.

Keywords

Prognosis Survival Corticosteroids Hyperglycemia Progression 

Metforminbeeinflusst die Progression bei diabetischen Glioblastompatienten

Zusammenfassung

Ziel

Veränderungen im körperlichen Metabolismus, darunter hohe Serumglukosespiegel, beeinflussen die Entstehung, das Wachstum und die rezidivierenden Eigenschaften maligner Tumore. Die Limitierung der Energieversorgung maligner Zellen mit dem Antidiabetikum Metformin könnte einen vielversprechenden Ansatz darstellen, das Glioblastomwachstum zu hemmen. Jedoch ist bis heute wenig über den Einfluss von endokrinen Dysfunktionen wie Diabetes mellitus, Kortikosteroidtherapie und dem Antidiabetikum Metformin auf die Progression und das Überleben bei Glioblastompatienten bekannt.

Patienten und Methoden

Zwischen 2006 und 2013 erhielten 276 Glioblastompatienten am Universitätsklinikum Heidelberg und am Deutschen Krebsforschungszentrum Heidelberg (DKFZ) eine Radiotherapie. Sowohl die klinischen Dokumente als auch die prä- und posttherapeutischen Magnetresonanztomogramme (MRT) wurden für diese Studie ausgewertet. Es konnten 40 Patienten (14,5 %) mit einer prätherapeutischen Diabetesdiagnose identifiziert werden, von den 20 (50 %) eine antidiabetische Therapie mit Metformin erhielten. Die Überlebensraten und Korrelationen mit klinischen Faktoren wurden mit Hilfe des t-Test, Log-rank-Test und der univariaten und multivariaten Cox-Regression berechnet.

Ergebnisse

Unsere Daten zeigen, dass milde und exzessive persistierende Hyperglykämien und eine Kortikosteroidtherapie in der multivariaten Analyse mit einem verminderten Überleben assoziiert waren. Diabetes selbst hatte keinen Einfluss auf die Progression oder das Überleben. Interessanterweise wiesen Diabetespatienten die eine Metformin-Therapie erhielten, ein signifikant verlängertes progressionfreies Intervall auf.

Schlussfolgerung

Zusammenfassend zeigen unsere Daten einen negativen prognostischen Einfluss der Hyperglykämie und Kortikosteroidtherapie auf das Überleben der Glioblastompatienten. Diabetes zeigte keinen Effekt auf das Überleben. Des Weiteren war eine Metformin-Therapie bei Diabetikern mit einem verlängerten progressionsfreien Intervall vergesellschaftet. Diese Ergebnisse sind von therapeutischem Interesse und dienen als Grundlage für weitere notwendige präklinische und klinische Untersuchungen.

Schlüsselwörter

Prognose Überleben Kortikosteroide Hyperglykämie Progression 

Notes

Compliance with ethical guidelines

Conflicts of interest

S. Adeberg, D. Bernhardt, S.B. Harrabi, T. Bostel, A. Mohr, C. Koelsche, C. Diehl, S. Rieken, and J. Debus state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  3. 3.
    Scott JN, Rewcastle NB, Brasher PM et al (1999) Which glioblastoma multiforme patient will become a long-term survivor? A population-based study. Ann Neurol 46:183–188CrossRefPubMedGoogle Scholar
  4. 4.
    Chaichana KL, Pendleton C, Chambless L et al (2013) Multi-institutional validation of a preoperative scoring system which predicts survival for patients with glioblastoma. J Clin Neurosci 20:1422–1426PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Adeberg S, Konig L, Bostel T et al (2014) Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone. Int J Radiat Oncol Biol Phys 90:886–896CrossRefPubMedGoogle Scholar
  6. 6.
    Combs SE, Edler L, Rausch R, Welzel T, Wick W, Debus J (2013) Generation and validation of a prognostic score to predict outcome after re-irradiation of recurrent glioma. Acta Oncol 52:147–152CrossRefPubMedGoogle Scholar
  7. 7.
    Adeberg S, Bostel T, Konig L, Welzel T, Debus J, Combs SE (2014) A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat Oncol 9:95Google Scholar
  8. 8.
    Schulz-Ertner D, Tsujii H (2007) Particle radiation therapy using proton and heavier ion beams. J Clin Oncol 25:953–964CrossRefPubMedGoogle Scholar
  9. 9.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90CrossRefPubMedGoogle Scholar
  10. 10.
    Polednak AP (2006) Comorbid diabetes mellitus and risk of death after diagnosis of colorectal cancer: a population-based study. Cancer Detect Prev 30:466–472CrossRefPubMedGoogle Scholar
  11. 11.
    Weiser MA, Cabanillas ME, Konopleva M et al (2004) Relation between the duration of remission and hyperglycemia during induction chemotherapy for acute lymphocytic leukemia with a hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone/methotrexate-cytarabine regimen. Cancer 100:1179–1185CrossRefPubMedGoogle Scholar
  12. 12.
    Yancik R, Wesley MN, Ries LA, Havlik RJ, Edwards BK, Yates JW (2001) Effect of age and comorbidity in postmenopausal breast cancer patients aged 55 years and older. JAMA 285:885–892CrossRefPubMedGoogle Scholar
  13. 13.
    Suba Z, Ujpal M (2006) [Correlations of insulin resistance and neoplasms]. Magy Onkol 50:127–135PubMedGoogle Scholar
  14. 14.
    Suba Z, Barabas J, Szabo G, Takacs D, Ujpal M (2005) Increased prevalence of diabetes and obesity in patients with salivary gland tumors. Diabetes Care 28:228CrossRefPubMedGoogle Scholar
  15. 15.
    Nilsen TI, Vatten LJ (2001) Prospective study of colorectal cancer risk and physical activity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemia hypothesis. Br J Cancer 84:417–422PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Colangelo LA, Gapstur SM, Gann PH, Dyer AR, Liu K (2002) Colorectal cancer mortality and factors related to the insulin resistance syndrome. Cancer Epidemiol Biomarkers Prev 11:385–391PubMedGoogle Scholar
  17. 17.
    Krinsley JS (2004) Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 79:992–1000Google Scholar
  18. 18.
    van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367CrossRefPubMedGoogle Scholar
  19. 19.
    Woodworth GF, Chaichana KL, McGirt MJ et al (2007) Predictors of ambulatory function after surgical resection of intramedullary spinal cord tumors. Neurosurgery 61:99–105. (discussion -6)CrossRefPubMedGoogle Scholar
  20. 20.
    Welch MR, Grommes C (2013) Retrospective analysis of the effects of steroid therapy and antidiabetic medication on survival in diabetic glioblastoma patients. CNS Oncol 2:237–246CrossRefPubMedGoogle Scholar
  21. 21.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314CrossRefPubMedGoogle Scholar
  22. 22.
    Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Guo D, Cloughesy TF, Radu CG, Mischel PS (2010) AMPK: a metabolic checkpoint that regulates the growth of EGFR activated glioblastomas. Cell Cycle 9:211–212PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Jalving M, Gietema JA, Lefrandt JD et al (2010) Metformin: taking away the candy for cancer? Eur J Cancer 46:2369–2380CrossRefPubMedGoogle Scholar
  25. 25.
    Jelluma N, Yang X, Stokoe D, Evan GI, Dansen TB, Haas-Kogan DA (2006) Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res 4:319–330CrossRefPubMedGoogle Scholar
  26. 26.
    Sandulache VC, Hamblin JS, Skinner HD, Kubik MW, Myers JN, Zevallos JP (2014) Association between metformin use and improved survival in patients with laryngeal squamous cell carcinoma. Head Neck 36:1039–1043CrossRefPubMedGoogle Scholar
  27. 27.
    Skinner HD, Crane CH, Garrett CR et al (2013) Metformin use and improved response to therapy in rectal cancer. Cancer Med 2:99–107PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Skinner HD, McCurdy MR, Echeverria AE et al (2013) Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol 52:1002–1009CrossRefPubMedGoogle Scholar
  29. 29.
    Storozhuk Y, Hopmans SN, Sanli T et al (2013) Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer 108:2021–2032PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Ling S, Feng T, Ke Q et al (2014) Metformin inhibits proliferation and enhances chemosensitivity of intrahepatic cholangiocarcinoma cell lines. Oncol Rep 31:2611–2618PubMedGoogle Scholar
  31. 31.
    Li H, Chen X, Yu Y et al (2014) Metformin inhibits the growth of nasopharyngeal carcinoma cells and sensitizes the cells to radiation via inhibition of the DNA damage repair pathway. Oncol Rep 32:2596–2604PubMedGoogle Scholar
  32. 32.
    Mohammed A, Janakiram NB, Brewer M et al (2013) Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Transl Oncol 6:649–659PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Kalender A, Selvaraj A, Kim SY et al (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11:390–401PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Rozengurt E (2014) Mechanistic target of rapamycin (mTOR): a point of convergence in the action of insulin/IGF-1 and G protein-coupled receptor agonists in pancreatic cancer cells. Front Physiol 5:357PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Isakovic A, Harhaji L, Stevanovic D et al (2007) Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci 64:1290–1302CrossRefPubMedGoogle Scholar
  36. 36.
    Scheithauer BW, Fuller GN, VandenBerg SR (2008) The 2007 WHO classification of tumors of the nervous system: controversies in surgical neuropathology. Brain Pathol 18:307–316CrossRefPubMedGoogle Scholar
  37. 37.
    Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMedGoogle Scholar
  39. 39.
    Shrieve DC, Alexander E 3rd, Black PM et al (1999) Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J Neurosurg 90:72–77CrossRefPubMedGoogle Scholar
  40. 40.
    Mirimanoff RO, Gorlia T, Mason W et al (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24:2563–2569CrossRefPubMedGoogle Scholar
  41. 41.
    Mayer A, Vaupel P, Struss HG, Giese A, Stockinger M, Schmidberger H (2014) Strong adverse prognostic impact of hyperglycemic episodes during adjuvant chemoradiotherapy of glioblastoma multiforme. Strahlenther Onkol 19:933–938CrossRefGoogle Scholar
  42. 42.
    McGirt MJ, Chaichana KL, Gathinji M et al (2008) Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas. Neurosurgery 63:286–291. (discussion 91)CrossRefPubMedGoogle Scholar
  43. 43.
    Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA (2009) Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol 27:1082–1086PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Adeberg S, Bernhardt D, Foerster R, Bostel T, Koerber SA, Mohr A, Koelsche C, Rieken S, Debus J (2015) The influence of hyperglycemia during radiotherapy on survival in patients with primary glioblastoma. Acta Oncol 20:1-7Google Scholar
  45. 45.
    Oudard S, Arvelo F, Miccoli L et al (1996) High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss. Br J Cancer 74:839–845PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kwon T, Jeong IG, You D et al (2014) Obesity and prognosis in muscle-invasive bladder cancer: the continuing controversy. Int J Urol 21:1106–1112CrossRefPubMedGoogle Scholar
  47. 47.
    Siegel EM, Ulrich CM, Poole EM, Holmes RS, Jacobsen PB, Shibata D (2010) The effects of obesity and obesity-related conditions on colorectal cancer prognosis. Cancer Control 17:52–57PubMedGoogle Scholar
  48. 48.
    Daniell HW (2010) Smoking, obesity, and statin therapy in the prognosis of prostate cancer. J Clin Oncol 28:e643. (author reply e5–6)CrossRefPubMedGoogle Scholar
  49. 49.
    Sinicrope FA, Dannenberg AJ (2011) Obesity and breast cancer prognosis: weight of the evidence. J Clin Oncol 29:4–7CrossRefPubMedGoogle Scholar
  50. 50.
    Del Barco S, Vazquez-Martin A, Cufi S et al (2011) Metformin: multi-faceted protection against cancer. Oncotarget 2:896–917PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Giannarelli R, Aragona M, Coppelli A, Del Prato S (2003) Reducing insulin resistance with metformin: the evidence today. Diabetes Metab 29:6S28–6S35CrossRefGoogle Scholar
  52. 52.
    Sato A, Sunayama J, Okada M, et al (2012) Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem cells Transl Med 1:811–824PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Soritau O, Tomuleasa C, Aldea M et al (2011) Metformin plus temozolomide-based chemotherapy as adjuvant treatment for WHO grade III and IV malignant gliomas. J BUON 16:282–289PubMedGoogle Scholar
  54. 54.
    Ferla R, Haspinger E, Surmacz E (2012) Metformin inhibits leptin-induced growth and migration of glioblastoma cells. Oncol Lett 4:1077–1081PubMedCentralPubMedGoogle Scholar
  55. 55.
    Dietrich J, Rao K, Pastorino S, Kesari S (2011) Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharmacol 4:233–242PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Adeberg
    • 1
    • 2
    Email author
  • Denise Bernhardt
    • 1
  • Semi Ben Harrabi
    • 1
    • 2
  • Tilman Bostel
    • 1
    • 2
  • Angela Mohr
    • 1
    • 2
  • Christian Koelsche
    • 4
    • 7
  • Christian Diehl
    • 5
    • 6
  • Stefan Rieken
    • 1
    • 3
  • Juergen Debus
    • 1
    • 2
    • 3
  1. 1.Department of Radiation OncologyUniversity Hospital of HeidelbergHeidelbergGermany
  2. 2.Clinical Cooperation Unit Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.Heidelberg Ion-Beam Therapy Center (HIT)HeidelbergGermany
  4. 4.Department of NeuropathologyUniversity Hospital of HeidelbergHeidelbergGermany
  5. 5.Technische Universität MünchenDepartment of Radiation OncologyMünchenGermany
  6. 6.Department of NeurosurgeryUniversity Hospital of HeidelbergHeidelbergGermany
  7. 7.Clinical Cooperation Unit NeuropathologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations