Skip to main content
Log in

Photon-induced cell migration and integrin expression promoted by DNA integration of HPV16 genome

Die genomische Integration von HPV16-DNS begünstigt eine photonenstimulierte Integrinexpression und Zellmigration

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Persistent human papilloma virus 16 (HPV16) infections are a major cause of cervical cancer. The integration of the viral DNA into the host genome causes E2 gene disruption which prevents apoptosis and increases host cell motility. In cervical cancer patients, survival is limited by local infiltration and systemic dissemination. Surgical control rates are poor in cases of parametrial infiltration. In these patients, radiotherapy (RT) is administered to enhance local control. However, photon irradiation itself has been reported to increase cell motility. In cases of E2-disrupted cervical cancers, this phenomon would impose an additional risk of enhanced tumor cell motility. Here, we analyze mechanisms underlying photon-increased migration in keratinocytes with differential E2 gene status.

Methods

Isogenic W12 (intact E2 gene status) and S12 (disrupted E2 gene status) keratinocytes were analyzed in fibronectin-based and serum-stimulated migration experiments following single photon doses of 0, 2, and 10 Gy. Quantitative FACS analyses of integrin expression were performed.

Results

Migration and adhesion are increased in E2 gene-disrupted keratinocytes. E2 gene disruption promotes attractability by serum components, therefore, effectuating the risk of local infiltration and systemic dissemination. In S12 cells, migration is further increased by photon RT which leads to enhanced expression of fibronectin receptor integrins.

Conclusion

HPV16-associated E2 gene disruption is a main predictor of treatment-refractory cancer virulence. E2 gene disruption promotes cell motility. Following photon RT, E2-disrupted tumors bear the risk of integrin-related infiltration and dissemination.

Zusammenfassung

Hintergrund

Persistierende Infektionen mit humanen Papillomaviren 16 (HPV16) sind ein Hauptauslöser des Zervixkarzinoms. Die Integration der viralen DNS in das Wirtszellgenom führt zum Integritätsverlust des E2-Gens, wodurch in der Wirtszelle Apoptose verhindert und Motilität gesteigert werden. In Zervixkarzinompatientinnen bestimmen die lokale Infiltration und die systemische Metastasierung die Überlebensraten. Bei parametraner Infiltration sind die Kontrollraten der Chirurgie schlecht, so dass die Photonenbestrahlung zur Steigerung der lokalen Kontrolle eingesetzt wird. Photonenbestrahlungen selbst sind jedoch als motilitätsfördernd beschrieben worden, so dass im Fall eines HPV16-integrierten Zervixkarzinoms diese Therapie ein zusätzliches Risiko der Förderung von Migration und Infiltration birgt. In der vorliegenden Arbeit untersuchen wir den Einfluss der genomischen HPV16-Integration auf die radiogene Modifizierbarkeit der Migration dysplastischer Keratinozyten.

Material und Methode

Isogene HPV16-infizierte Keratinozyten mit entweder intaktem (W12-) oder aber defizientem E2-Genstatus (S12) wurden in Fibronektin-basierten und serumstimulierten Migrationsexperimenten nach Photonenbestrahlung mit Einzeldosen von 0, 2 und 10,0 Gy analysiert. Im Anschluss erfolgten quantitative FACS-Bestimmungen der Integrinexpression.

Ergebnisse

Sowohl Migration als auch Adhäsion sind in E2-defizienten Keratinozyten gesteigert. In diesen Zellen zeigt sich eine signifikante Stimulierbarkeit der Migration durch Serumbestandteile. Ferner exprimieren diese Zellen nach Photonenbestrahlung signifikant mehr Fibronektin-bindende Integrine, wodurch ihr Migrationsvermögen radiogen deutlich gesteigert wird.

Schlussfolgerungen

Der durch die Integration von HPV16 verursachte Verlust des E2-Gens stellt eine Ursache radioresistenter Tumorvirulenz dar. E2-defiziente Zellen sind nicht nur hypermotil und durch Serumbestandteile lockbar, sondern zeigen nach Photonenbestrahlung eine gesteigerte Integrinexpression, welche das Risiko für Infiltration und Metastasierung zusätzlich begünstigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. zur Hausen H (1999) Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin Cancer Biol 9:405–411

    Article  PubMed  CAS  Google Scholar 

  3. Vinokurova S, Wentzensen N, Kraus I et al (2008) Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res 68:307–313

    Article  PubMed  CAS  Google Scholar 

  4. Berezutskaya E, Yu B, Morozov A, Raychaudhuri P, Bagchi S (1997) Differential regulation of the pocket domains of the retinoblastoma family proteins by the HPV16 E7 oncoprotein. Cell Growth Differ 8:1277–1286

    PubMed  CAS  Google Scholar 

  5. Thomas M, Pim D, Banks L (1999) The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 18:7690–7700

    Article  PubMed  CAS  Google Scholar 

  6. Dall KL, Scarpini CG, Roberts I et al (2008) Characterization of naturally occurring HPV16 integration sites isolated from cervical keratinocytes under noncompetitive conditions. Cancer Res 68:8249–8259

    Article  PubMed  CAS  Google Scholar 

  7. Lace MJ, Isacson C, Anson JR et al (2009) Upstream regulatory region alterations found in human papillomavirus type 16 (HPV-16) isolates from cervical carcinomas increase transcription, ori function, and HPV immortalization capacity in culture. J Virol 83:7457–7466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Liao S, Deng D, Zhang W et al (2012) Human papillomavirus 16/18 E5 promotes cervical cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo. Oncol Rep 29:95–102

    PubMed  Google Scholar 

  9. Morrison MA, Morreale RJ, Akunuru S, Kofron M, Zheng Y, Wells SI (2011) Targeting the human papillomavirus E6 and E7 oncogenes through expression of the bovine papillomavirus type 1 E2 protein stimulates cellular motility. J Virol 85:10487–10498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Lindel K, Rieken S, Daffinger S, Weber KJ, de Villiers EM, Debus J (2012) The transcriptional regulator gene E2 of the Human Papillomavirus (HPV) 16 influences the radiosensitivity of cervical keratinocytes. Radiat Oncol 7:187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Su WH, Chuang PC, Huang EY, Yang KD (2011) Radiation-induced increase in cell migration and metastatic potential of cervical cancer cells operates via the K-Ras pathway. Am J Pathol 180:862–871

    Article  PubMed  Google Scholar 

  12. Landoni F, Maneo A, Colombo A et al (1997) Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet 350:535–540

    Article  PubMed  CAS  Google Scholar 

  13. Sedlis A, Bundy BN, Rotman MZ, Lentz SS, Muderspach LI, Zaino RJ (1999) A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: a Gynecologic Oncology Group Study. Gynecol Oncol 73:177–183

    Article  PubMed  CAS  Google Scholar 

  14. Heinzelmann F, Henke G, von Grafenstein M et al (2012) Adjuvant radiochemotherapy in patients with locally advanced high-risk cervical cancer. Strahlenther Onkol 188:568–575

    Article  PubMed  CAS  Google Scholar 

  15. Marnitz S, Kohler C, Rauer A et al (2013) Patterns of care in patients with cervical cancer 2012: Results of a survey among German radiotherapy departments and out-patient health care centers. Strahlenther Onkol 190:34–40

    Google Scholar 

  16. Ogata T, Teshima T, Kagawa K et al (2005) Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 65:113–120

    PubMed  CAS  Google Scholar 

  17. Rieken S, Habermehl D, Mohr A et al (2011) Targeting alphanubeta3 and alphanubeta5 inhibits photon-induced hypermigration of malignant glioma cells. Radiat Oncol 6:132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Auvinen E, Carpen O, Korpela T, Ronty M, Vaheri A, Tarkkanen J (2013) Altered expression of ezrin, E-cadherin and beta-catenin in cervical neoplasia. Neoplasma 60:56–61

    Article  PubMed  CAS  Google Scholar 

  19. Jaafar F, Righi E, Lindstrom V et al (2009) Correlation of CXCL12 expression and FoxP3 + cell infiltration with human papillomavirus infection and clinicopathological progression of cervical cancer. Am J Pathol 175:1525–1535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Werner J, Decarlo CA, Escott N, Zehbe I, Ulanova M (2011) Expression of integrins and Toll-like receptors in cervical cancer: effect of infectious agents. Innate Immun 18:55–69

    Article  PubMed  Google Scholar 

  21. Wu S, Meng L, Wang S et al (2006) Reversal of the malignant phenotype of cervical cancer CaSki cells through adeno-associated virus-mediated delivery of HPV16 E7 antisense RNA. Clin Cancer Res 12:2032–2037

    Article  PubMed  CAS  Google Scholar 

  22. Yu Y, Zhang Y, Zhang S MicroRNA-92 regulates cervical tumorigenesis and its expression is upregulated by human papillomavirus-16 E6 in cervical cancer cells. Oncol Lett 6:468–474

  23. Stanley MA, Browne HM, Appleby M, Minson AC (1989) Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer 43:672–676

    Article  PubMed  CAS  Google Scholar 

  24. Bechtold V, Beard P, Raj K (2003) Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA. J Virol 77:2021–2028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. zur Hausen H (2009) Papillomaviruses in the causation of human cancers – a brief historical account. Virology 384:260–265

    Article  PubMed  CAS  Google Scholar 

  26. Lindel K, de Villiers EM, Burri P et al (2006) Impact of viral E2-gene status on outcome after radiotherapy for patients with human papillomavirus 16-positive cancer of the uterine cervix. Int J Radiat Oncol Biol Phys 65:760–765

    Article  PubMed  Google Scholar 

  27. Fagundes H, Perez CA, Grigsby PW, Lockett MA (1992) Distant metastases after irradiation alone in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 24:197–204

    Article  PubMed  CAS  Google Scholar 

  28. Spangle JM, Munger K (2013) The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. PLoS Pathog 9:e1003237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Oktay MH, Oktay K, Hamele-Bena D, Buyuk A, Koss LG (2003) Focal adhesion kinase as a marker of malignant phenotype in breast and cervical carcinomas. Hum Pathol 34:240–245

    Article  PubMed  CAS  Google Scholar 

  30. Caffarel MM, Chattopadhyay A, Araujo AM et al (2013) Tissue transglutaminase mediates the pro-malignant effects of oncostatin M receptor over-expression in cervical squamous cell carcinoma. J Pathol 231:168–179

    Article  PubMed  CAS  Google Scholar 

  31. Maity G, Fahreen S, Banerji A et al (2010) Fibronectin-integrin mediated signaling in human cervical cancer cells (SiHa). Mol Cell Biochem 336:65–74

    Article  PubMed  CAS  Google Scholar 

  32. Gruber G, Hess J, Stiefel C et al (2005) Correlation between the tumoral expression of beta3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. Br J Cancer 92:41–46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750

    PubMed  CAS  Google Scholar 

  34. Moriconi F, Malik I, Ahmad G et al (2009) Effect of irradiation on gene expression of rat liver adhesion molecules: in vivo and in vitro studies. Strahlenther Onkol 185:460–468

    Article  PubMed  Google Scholar 

  35. Velpula KK, Gogineni VR, Nalla AK et al (2013) Radiation-induced hypomethylation triggers urokinase plasminogen activator transcription in meningioma cells. Neoplasia 15:192–203

    PubMed  CAS  PubMed Central  Google Scholar 

  36. White DP, Caswell PT, Norman JC (2007) alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rieken M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieken, S., Simon, F., Habermehl, D. et al. Photon-induced cell migration and integrin expression promoted by DNA integration of HPV16 genome. Strahlenther Onkol 190, 944–949 (2014). https://doi.org/10.1007/s00066-014-0649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0649-6

Keywords

Schlüsselwörter

Navigation