Strahlentherapie und Onkologie

, Volume 190, Issue 5, pp 459–466 | Cite as

Secondary radiation dose during high-energy total body irradiation

  • M. JaniszewskaEmail author
  • K. Polaczek-Grelik
  • M. Raczkowski
  • B. Szafron
  • A. Konefał
  • W. Zipper
Original article



The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam.


Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only.

Materials and methods

The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior–posterior/posterior–anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients.


The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: 56Mn in the stainless steel and 187W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides.


Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source–surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once.


High-energy teleradiotherapy Whole-body irradiation Secondary radiation Induced radioactivity Neutron dose 

Sekundäre Strahlendosis während Ganzkörperbestrahlung am Linearbeschleuniger



Die zusätzliche Dosis durch sekundäre Neutronen- und γ-Strahlung während der Ganzkörperbestrahlung mit Röntgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschätzt.


Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsächlich im Beschleuniger Kernreaktionen statt, die Sekundärstrahlung erzeugen. Die sich daraus ergebende Aktivität hängt von der Halbwertzeit der erzeugten Radionuklide ab, sekundäre Neutronenstrahlung tritt dagegen nur während des Behandlungsprozesses auf.

Materialien und Methoden

Bei Ganzkörperbestrahlung mit einem 18-MeV-Strahl (Clinac 2100) wurde der laterale und der anterior-posteriore bzw. posterior-anteriore Anteil während der Abgabe einer therapeutischen Dosis von 2 Gy pro Strahlenbehandlung untersucht. Neutronen- und Photonenflussdichten wurde mit Neutronenaktivierungsanalyse und Halbleiterspektrometrie bestimmt. Die Sekundärdosis wurde mithilfe von Fluss-Dosis-Umrechnungsfaktoren geschätzt.


Der größte Anteil der Sekundärdosis hängt vom Fluss schneller Neutronen ab. Die Hauptquelle der γ-Strahlung sind 56Mn im Edelstahl und 187W des Fokussierungssystems sowie Positronenemitter, die über (n,γ)- bzw. (γ,n)-Prozesse aktiviert wurden. Zusätzlich zur therapeutischen Gesamtdosis von 12 Gy wird der Patient einer Dosis von bis zu 57,43 mSv ausgesetzt, davon 4,36 mSv aus aktivierten Radionukliden.


Die Neutronendosis hängt hauptsächlich von der Anzahl der abgegebenen Monitoreinheiten ab. Allerdings wird sie durch den großen Abstand zwischen Quelle und Oberfläche sowie die Verwendung von Plexiglasplatten zur Abdeckung des Patienten moderiert. Die Sekundärstrahlung setzt den ganzen Körper einer Dosis aus. Dies muss v. a. dann berücksichtigt werden, wenn eine Strahlenbehandlung nicht den ganzen Körper auf einmal betrifft.


Hochenergiefernbestrahlung Ganzkörperbestrahlung Sekundärstrahlung Induzierte Radioaktivität Neutronendosis 



Participation of BS in this research is supported by the “DoktoRIS scholarship program in favor of innovative Silesia” cofinanced by the European Union within the European Social Fund.


  1. 1.
    Becker J, Brunckhorst E, Schmidt R (2007) Photoneutron production of a Siemens Primus linear accelerator study by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system. Phys Med Biol 52:6375–6387PubMedCrossRefGoogle Scholar
  2. 2.
    Bölling T, Kreuziger DC, Ernst I et al (2011) Retrospective, monocentric analysis of late effects after Total Body Irradiation (TBI) in Adults. Strahlenther Onkol 187:311–315PubMedCrossRefGoogle Scholar
  3. 3.
    Bradley J, Reft C, Goldman S et al (1998) High-energy total body irradiation as preparation for bone marrow transplantation in leukemia patients: treatment technique and related complications. Int J Radiat Oncol Biol Phys 40:391–396PubMedCrossRefGoogle Scholar
  4. 4.
    Debertin K, Helmer RG (1998) Gamma- and X-ray spectrometry with semiconductor detectors. North-Holland Company, AmsterdamGoogle Scholar
  5. 5.
    Firestone RB (ed) (1996) Tables of Isotopes, eight edition; CD–ROM edition, version 1.0Google Scholar
  6. 6.
    Fischer HW, Tabot BE, Poppe B (2006) Activation process in a medical linear accelerator and spatial distribution of activation products. Phys Med Biol 51:N461–N466Google Scholar
  7. 7.
    Followill DS, Stovall MS, Kry S, Ibbott GS (2003) Neutron source strength measurements of Varian, Siemens, Wlekta and General Electric linear accelerators. J Appl Clin Med Phys 4:189–194PubMedCrossRefGoogle Scholar
  8. 8.
    Galvin JM (2014) Total body irradiation dosimetry and practical considerations. Accessed 05 Jan 2014
  9. 9.
    Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88PubMedCrossRefGoogle Scholar
  10. 10.
    Howell RM, Ferenci MS, Hertel NE, Fullerton GD (2005) Investigation of secondary neutron dose for 18 MV dynamic MLC IMRT delivery. Med Phys 32:786–793PubMedCrossRefGoogle Scholar
  11. 11.
    Anonymous (1998) IEC 60601-2-1 Medical electrical equipment—part 2–1: particular requirements for the safety of electron accelerators in the range 1 MeV to 50 MeV. International standardGoogle Scholar
  12. 12.
    Anonymous (1991) International Commission on Radiological Protection, ICRP Publication No. 60. Recommendations of the International Commission on Radiological Protection. Pergamon, OxfordGoogle Scholar
  13. 13.
    Kirchheiner K, Czajka A, Ponocny-Seliger E et al (2013) Physical and psychosocial support requirements of 1,500 patients starting radiotherapy. Strahlenther Onkol 189:424–429PubMedCrossRefGoogle Scholar
  14. 14.
    Konefał A, Dybek M, Zipper W et al (2005) Thermal and epithermal neutrons in the vicinity of the Primus Siemens biomedical accelerator. Nukleonika 50:73–81Google Scholar
  15. 15.
    Konefał A, Polaczek-Grelik K, Zipper W (2008) Undesirable nuclear reactions and induced radioactivity as a result of the use of the high-energy therapeutic beams generated by medical linacs. Radiat Prot Dosimetry 128:133–145PubMedCrossRefGoogle Scholar
  16. 16.
    Kralik M, Turek K (2004) Characterization of neutron fields around high-energy X-ray radiotherapy machines. Radiat Prot Dosimetry 110:503–550PubMedCrossRefGoogle Scholar
  17. 17.
    Mayles P, Nahum A, Rosenwald JC (eds) (2007) Handbook of radiotherapy physics. Theory and practice. Taylor & Francis Group, LLC, pp 1037–1038Google Scholar
  18. 18.
    Müller HL, Gebhardt U, Warmuth-Metz M et al (2012) Meningioma as second malignant neoplasm after oncological treatment during childhood. Strahlenther Onkol 188:438–441PubMedCrossRefGoogle Scholar
  19. 19.
    Nath R, Boyer AL, La Riviere PD et al (1986) Neutron measurements around high energy X-ray radiotherapy machines. AAPM Report No. 19 published for the American Association of Physicists in Medicine. The American Institute of Physics, New YorkGoogle Scholar
  20. 20.
    Pena J, Franco L, Gomez F et al (2005) Monte Carlo study of Siemens Primus photoneutron production. Phys Med Biol 50:5921–5933PubMedCrossRefGoogle Scholar
  21. 21.
    Piotrowski T, Adamska K, Malicki J (2007) Effect of scattered radiation in the total body irradiation technique: evaluation of the spoiler and wall dose component In the depth dose distribution. Nukleonika 52(4):153–158Google Scholar
  22. 22.
    Polaczek-Grelik K, Karaczyn B, Grządziel M et al (2010) The map of thermal and resonance neutron distribution inside the treatment room for accelerator therapy. Paper in “Some aspects of medical physics—in vivo and in vitro studies” Series of Monographs published by Pol. J Environ Stud 1:126–131Google Scholar
  23. 23.
    Pommier P, Sunyach MP, Pasteuris C et al (2009) Second cancer after Total-body Irradiation (TBI) in childhood. Strahlenther Onkol 185(Special issue2):13–16Google Scholar
  24. 24.
    Quast U (2006) Whole body radiotherapy: a TBI-guideline. J Med Phys 31:5–12PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Rawlinson JA, Islam MK, Galbraith DM (2002) Dose to radiation therapists from activation at high-energy accelerators used for conventional and intensity-modulated radiation therapy. Med Phys 29:598–608PubMedCrossRefGoogle Scholar
  26. 26.
    Reft CS, Runkel-Muller R, Myrianthopoulos L (2006) In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT. Med Phys 33:3734–3742PubMedCrossRefGoogle Scholar
  27. 27.
    Schneider U, Lomax A, Pemler P et al (2006) The impact of IMRT and proton radiotherapy on secondary cancer incidence. Strahlenther Onkol 182:647–652PubMedCrossRefGoogle Scholar
  28. 28.
    Smith H (ed) (1996) International commission on radiological protection. Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Pergamon Press, Oxford (Annals of ICRP)Google Scholar
  29. 29.
    Sobecks RM, Daugherty CK, Hallahan DE et al (2000) A dose escalation study of total body irradiation followed by high-dose etoposide and allogenic blood stem cell transplantation for the treatment of advanced hematologic malignancies. Bone Marrow Transplant 25:807–813PubMedCrossRefGoogle Scholar
  30. 30.
    Van Dyk J, Galvin JM, Glasgow GP, Podgorsak EB (1986) The physical aspects of total and half body photon irradiation. AAPM Report No. 17 published for the American Association of Physicists in Medicine, the American Institute of Physics New YorkGoogle Scholar
  31. 31.
    Vega-Carrillo HR, Hernandez-Almaraz B, Hernandez-Davila VM, Ortiz-Hernandez A (2010) Neutron spectrum and doses in a 18 MV LINAC. J Radioanal Nucl Chem 283:261–265CrossRefGoogle Scholar
  32. 32.
    Wang YZ, Evans MDC, Podgorsak EB (2005) Characteristics of induced activity from medical linear accelerators. Med Phys 32:2899–2910PubMedCrossRefGoogle Scholar
  33. 33.
    Yoon M, Ahn SH, Kim J et al (2010) Radiation-induced cancers from modern radiotherapy techniques: intensity-modulated radiotherapy versus proton therapy. Int J Radiat Oncol Biol Phys 77:1477–1485PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Janiszewska
    • 1
    Email author
  • K. Polaczek-Grelik
    • 2
  • M. Raczkowski
    • 1
  • B. Szafron
    • 3
  • A. Konefał
    • 3
  • W. Zipper
    • 3
  1. 1.Medical Physics DepartmentLower Silesian Oncology CenterWroclawPoland
  2. 2.Medical Physics DepartmentUniversity of SilesiaKatowicePoland
  3. 3.Department of Nuclear Physics and Its ApplicationsUniversity of SilesiaKatowicePoland

Personalised recommendations