Skip to main content
Log in

DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia

DNA-Fragmentierung und caspaseunabhängiger programmierter Zelltod durch modulierte Elektrohyperthermie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

The electric field and the concomitant heat (electrohyperthermia) can synergistically induce cell death in tumor tissue, due to elevated glycolysis, ion concentration, and permittivity in malignant compared with nonmalignant tissues. Here we studied the mechanism and time course of tumor destruction caused by electrohyperthermia.

Material and methods

Bilateral implants of HT29 colorectal cancer in the femoral regions of Balb/c (nu/nu) mice were treated with a single 30-min shot of modulated, 13.56-MHz, radiofrequency-generated electrohyperthermia (mEHT). Tumors at 0, 1, 4, 8, 14, 24, 48, and 72 h posttreatment were studied for morphology, DNA fragmentation, and cell death response-related protein expression using tissue microarrays, immunohistochemistry, Western immunoblots, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays.

Results

Modulated EHT treatment induced significant tumor destruction in HT29 xenografts with a peak of a sevenfold increase compared with the untreated controls. The significant treatment-related elevation of DNA fragmentation—detected with TUNEL assay—and apoptotic bodies between 24 and 72 h posttreatment was proof of a programmed cell death response. This was associated with significant mitochondrial accumulation of bax and mitochondrial-to-cytoplasmic release of cytochrome c proteins between 8 and 14 h. Cleaved caspase-3 levels were low and mainly localized to inflammatory cells. The substantial cytoplasmic-to-nuclear translocation of apoptosis-inducing factor (AIF) and its 57-kDa activated fragment detected between 14 and 24 h after treatment indicated AIF as an effector for DNA fragmentation.

Conclusion

Modulated EHT treatment can induce programmed cell death-related tumor destruction in HT29 colorectal adenocarcinoma xenografts, which dominantly follows a caspase-independent subroutine.

Zusammenfassung

Hintergrund und Ziel

Die gleichzeitige Einwirkung elektrischer Felder und Hitze (Elektrohyperthermie) kann durch eine im Vergleich zu gesunden Zellen erhöhte Glykolyse, Ionenkonzentration und elektrische Leitfähigkeit in Tumorgewebe synergistisch zum Zelltod führen. Diese Arbeit untersucht den Mechanismus und den Zeitverlauf der durch Elektrohyperthermie induzierten Tumorzerstörung.

Material und Methoden

Bilaterale Implantate von HT29-Kolorektalkrebszellen im Oberschenkelbereich von Balb/c-(nu/nu-)-Mäusen wurden 30 min lang einer durch eine modulierte Radiofrequenz von 13,56 MHz erzeugten Elektrohyperthermie (mEHT) ausgesetzt. Jeweils 0, 1, 4, 8, 14, 24, 48 und 72 h nach Behandlung wurden die Tumore hinsichtlich Morphologie, DNA-Fragmentierung und Zelltodantwort auf Proteinexpressionsebene untersucht, wobei Gewebe-Mikroarrays, immunhistochemische Methoden, Western-Blots und TUNEL-Assays ("Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling") eingesetzt wurden.

Ergebnisse

Die mEHT-Behandlung führte in HT29-Xenografts zu einer signifikanten Zerstörung von Tumorgewebe vom bis zum 7-Fachen der unbehandelten Kontrollen. Die signifikante behandlungsinduzierte DNA-Fragmentierung (Detektion durch TUNEL-Assay) und Bildung von Apoptosekörpern 24–72 h nach Behandlung ließ erkennen, dass es zum programmierten Zelltod gekommen war. Daneben wurde nach 8–14 h eine signifikante Akkumulation von Bax in den Mitochondrien und eine Freisetzung von mitochondrialem Cytochrom c in das Zellplasma beobachtet. Die Konzentration an gespaltener Caspase-3 war niedrig und im Wesentlichen auf Entzündungszellen beschränkt. Die 14–24 h nach Behandlung festgestellte umfangreiche Translokation von zytoplasmatischem apoptoseinduzierendem Faktor (AIF) und seinem aktiven 57-kDa-Fragment in den Kern deutete auf AIF als Auslöser für die DNA-Fragmentierung hin.

Schlussfolgerung

Die mEHT-Behandlung kann in kolorektalen HT29-Adenokarzinom-Xenografts Tumorgewebe durch Induktion des programmierten Zelltods zerstören, wobei hauptsächlich ein caspaseunabhängiger Pfad beschritten wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andocs G et al (2009) Strong synergy of heat and modulated electromagnetic field in tumor cell killing. Strahlenther Onkol 185:120–126

    Article  PubMed  Google Scholar 

  2. Andocs G, Szasz O, Szasz A (2009) Oncothermia treatment of cancer: from the laboratory to clinic. Electromagn Biol Med 28:148–165

    Article  CAS  PubMed  Google Scholar 

  3. Baritaud M et al (2010) Histone H2AX: the missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle 9:3166–3173

    Article  CAS  PubMed  Google Scholar 

  4. Bayley JP, Devilee P (2012) The Warburg effect in 2012. Curr Opin Oncol 24:62–67

    Article  CAS  PubMed  Google Scholar 

  5. Blad B, Baldetorp B (1996) Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography. Physiol Meas 17:A105–A115

    Article  PubMed  Google Scholar 

  6. Blad B et al (1999) An electrical impedance index to distinguish between normal and cancerous tissues. J Med Eng Technol 23:57–62

    Article  CAS  PubMed  Google Scholar 

  7. Boujrad H et al (2007) AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 6:2612–2619

    Article  CAS  PubMed  Google Scholar 

  8. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fiorentini G et al (2006) A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia. In Vivo 20:721–724

    Google Scholar 

  10. Fiorentini G, Szasz A (2006) Hyperthermia today: electric energy, a new opportunity in cancer treatment. J Cancer Res Ther 2:41–46

    Article  PubMed  Google Scholar 

  11. Foster KR (1999) Dielectric properties of tissues. In: Bronzino JD (ed) The biomedical engeneering handbook, 2nd edn. CRC Press, Boca Raton

  12. Frey B et al (2012) Old and new facts about hyperthermia-induced modulations of the immune system. Int J Hyperthermia 28:528–542

    Article  CAS  PubMed  Google Scholar 

  13. Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Garczarczyk D et al (2010) Protein kinase Cgamma in colon cancer cells: expression, Thr514 phosphorylation and sensitivity to butyrate-mediated upregulation as related to the degree of differentiation. Chem Biol Interact 185:25–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Goetze K et al (2013) Glycolysis-related gene induction and ATP reduction during fractionated irradiation: Markers for radiation responsiveness of human tumor xenografts. Strahlenther Onkol (in press)

  16. Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 1757:639–647

    Article  CAS  PubMed  Google Scholar 

  17. Hager ED et al (1999) Deep hyperthermia with radiofrequencies in patients with liver metastases from colorectal cancer. Anticancer Res 19:3403–3408

    CAS  PubMed  Google Scholar 

  18. Harmon BV et al (1990) Cell death induced in a murine mastocytoma by 42–47 degrees C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int J Radiat Biol 58:845–858

    Article  CAS  PubMed  Google Scholar 

  19. Hildebrandt B et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56

    Article  PubMed  Google Scholar 

  20. Hojka-Osinska A, Ziolo E, Rapak A (2012) Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells. Biochem Biophys Res Commun 419:590–595

    Article  CAS  PubMed  Google Scholar 

  21. Kampinga HH (2006) Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia 22:191–196

    Article  CAS  PubMed  Google Scholar 

  22. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  Google Scholar 

  23. Lovey J et al (2008) Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels. Strahlenther Onkol 184:1–7

    Article  PubMed  Google Scholar 

  24. Mantel F et al (2010) Combination of ionising irradiation and hyperthermia activates programmed apoptotic and necrotic cell death pathways in human colorectal carcinoma cells. Strahlenther Onkol 186:587–599

    Article  PubMed  Google Scholar 

  25. Mirkes PE (2008) Cell death in normal and abnormal development. Congenit Anom (Kyoto) 48:7–17

  26. Natarajan SK, Becker DF (2012) Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. Cell Health Cytoskelet 2012:11–27

    PubMed Central  PubMed  Google Scholar 

  27. Norberg E, Orrenius S, Zhivotovsky B (2010) Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun 396:95–100

    Article  CAS  PubMed  Google Scholar 

  28. Pethig R et al (1984) Interaction of the 2,6-dimethoxysemiquinone and ascorbyl free radicals with Ehrlich ascites cells: a probe of cell-surface charge. Proc Natl Acad Sci USA 81:2088–2091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rong Y, Mack P (2000) Apoptosis induced by hyperthermia in Dunn osteosarcoma cell line in vitro. Int J Hyperthermia 16:19–27

    Article  CAS  PubMed  Google Scholar 

  30. Shchepotin IB et al (1997) Apoptosis induced by hyperthermia and verapamil in vitro in a human colon cancer cell line. Int J Hyperthermia 13:547–557

    Article  CAS  PubMed  Google Scholar 

  31. Shrivastava A et al (2006) Molecular iodine induces caspase-independent apoptosis in human breast carcinoma cells involving the mitochondria-mediated pathway. J Biol Chem 281:19762–19771

    Article  CAS  PubMed  Google Scholar 

  32. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  33. Tamamoto T et al (2003) Heat-induced growth inhibition and apoptosis in transplanted human head and neck squamous cell carcinomas with different status of p53. Int J Hyperthermia 19:590–597

    Article  CAS  PubMed  Google Scholar 

  34. Tischner D et al (2012) Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis 17:1197–1209

    Article  CAS  PubMed  Google Scholar 

  35. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  36. Wismeth C et al (2010) Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas: phase I clinical results. J Neurooncol 98:395–405

    Article  CAS  PubMed  Google Scholar 

  37. Yonezawa M et al (1996) Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int J Cancer 66:347–351

    Article  CAS  PubMed  Google Scholar 

  38. Zou Y, Guo Z (2003) A review of electrical impedance techniques for breast cancer detection. Med Eng Phys 25:79–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Edit Parsch, Renata Papp, Marcell A. Szasz, Agoston Ghidan, Diana Brauswetter, and Sandor Kiss for their technical assistance. This work was supported by grants KMOP-1.1.4-07/1-2008-0083, KMOP 1.1.1-08/1-2008-0059, and TÉT-10-1-2011-0914 in Hungary.

Compliance with ethical guidelines

Conflict of interest

N. Meggyeshazi, G. Andocs, L. Balogh, P. Balla, G. Kiszner, I. Teleki, A. Jeney, and T. Krenacs state that there are no conflicts of interest. All national guidelines on the care and use of laboratory animals have been followed and the necessary approval was obtained from the relevant authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Krenacs PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meggyeshazi, N., Andocs, G., Balogh, L. et al. DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther Onkol 190, 815–822 (2014). https://doi.org/10.1007/s00066-014-0617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0617-1

Keywords

Schlüsselwörter

Navigation