Skip to main content
Log in

Quality of patient positioning during cerebral tomotherapy irradiation using different mask systems

Qualität der Patientenpositionierung unter Verwendung verschiedener Maskensysteme bei zerebralen Bestrahlungen (Tomotherapie)

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Patient immobilization during brain tumor radiotherapy is achieved by employing different mask systems. Two innovative mask systems were developed to minimize the problems of claustrophobic patients. Our aim was to evaluate whether the quality of patient immobilization using the new mask systems was equivalent to the standard mask system currently in use.

Material and methods

Thirty-three patients with cerebral target volumes were irradiated using the Hi-Art II tomotherapy system between 2010 and 2012. Each group of 11 patients was fitted with one of the two new mask systems (Crystal® or Open Face® mask, Orfit) or the standard three-point mask (Raycast®-HP, Orfit) and a total of 557 radiotherapy fractions were evaluated. After positioning was checked by MV-CT, the necessary table adjustments were noted. Data were analyzed by comparing the groups, and safety margins were calculated for nonimage-guided irradiation.

Results

The mean values of the table adjustments were: (a) lateral (mm): − 0.22 (mask 1, standard deviation (σ): 2.15); 1.1 (mask 2, σ: 2.4); − 0.64 (mask 3, σ: 2.9); (b) longitudinal (mm): − 1 (mask 1, σ: 2.57); − 0.5 (mask 2, σ: 4.7); − 1.22 (mask 3, σ: 2.52); (c) vertical (mm): 0.62 (mask 1, σ: 0.63); 1.2 (mask 2, σ: 1.0); 0.57 (mask 3, σ: 0.28); (d) roll: 0.35° (mask 1, σ: 0.75); 0° (mask 2, σ: 0.8); 0.02° (mask 3, σ: 1.12). The outcomes suggest necessary safety margins of 5.49–7.38 mm (lateral), 5.4–6.56 mm (longitudinal), 0.82–3.9 mm (vertical), and 1.93–4.5° (roll). There were no significant differences between the groups.

Conclusions

The new mask systems improve patient comfort while providing consistent patient positioning.

Zusammenfassung

Hintergrund und Ziel

Die Patientenpositionierung bei der Bestrahlung von zerebralen Zielvolumina erfolgt durch verschiedene Maskenarten. Um Patienten mit Klaustrophobie die Durchführung der täglichen Bestrahlung zu erleichtern, wurden zwei innovative Maskensysteme entwickelt. Unser Ziel war es, zu überprüfen, ob die Qualität der Lagerung der des bislang genutzten Standardmaterials entspricht.

Methodik

Von 2010 bis 2012 wurden 33 Patienten mit zerebralen Zielvolumina am Tomotherapie-Hi-Art-II-System bestrahlt. Die Fixation erfolgte für jeweils 11 Patienten mit zwei verschiedenen neuen Maskensystemen (Crystal®- oder Open-Face®-Maske, Orfit) oder einer Standard-3-Punkt-Maske (Raycast©-HP, Orfit). Ausgewertet wurden 557 Fraktionen. Die täglichen, sich aus dem MV-CT ergebenden Verschiebungen wurden im Vergleich der Gruppen analysiert und die sich ergebenden Sicherheitssäume für Bestrahlungen ohne vorherige Bildgebung berechnet.

Ergebnisse

Im Mittel waren folgende Tischverschiebungen notwendig: (a) Lateral [mm]: − 0,22 (Maske 1, Standardabweichung [σ]: 2,15), 1,1 (Maske 2, σ: 2,4), − 0,64 (Maske 3, σ: 2,9); (b) Longitudinal [mm]: − 1 (Maske 1, σ:2,57), − 0,5 (Maske 2, σ: 4,7); − 1,22 (Maske 3, σ: 2,52); (c) Vertikal [mm]: 0,62 (Maske 1, σ: 0,63), 1,2 (Maske 2, σ: 1,0), 0,57 (Maske 3, σ: 0,28); (d) Roll: 0,35° (Maske 1, σ: 0,75), 0° (Maske 2, σ: 0,8), 0,02° (Maske 3, σ: 1,12). Daraus resultieren notwendige Sicherheitssäume von 5,49–7,38 mm (lateral), 5,4–6,56 mm (longitudinal), 0,82–3,9 mm (vertikal) und 1,93–4,5° (roll). Ein signifikanter Unterschied zwischen den Gruppen existiert nicht.

Schlussfolgerung

Die neuen Maskenmaterialien verbessern den Patientenkomfort bei gleicher Qualität in Bezug auf die Patientenlagerung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Boda-Heggemann J, Walter C, Rahn A et al (2006) Repositioning accuracy of two different mask systems-3D revisited: comparison using true 3D/3D matching with cone-beam CT. Int J Radiat Oncol Biol Phys 66(5):1568–1575

    Article  PubMed  Google Scholar 

  2. Chen AM, Farwell DG, Luu Q et al (2011) Evaluation of the planning target volume in the treatment of head and neck cancer with intensity-modulated radiotherapy: what is the appropriate expansion margin in the setting of daily image guidance? Int J Radiat Oncol Biol Phys 81(4):943–949

    Article  PubMed  Google Scholar 

  3. Fuss M, Salter BJ, Cheek D et al (2004) Repositioning accuracy of a commercially available thermoplastic mask system. Radiother Oncol 71(3):339–345

    Article  PubMed  Google Scholar 

  4. Gaisberger C, Steininger P, Mitterlechner B et al (2013) Three-dimensional surface scanning for accurate patient positioning and monitoring during breast cancer radiotherapy. Strahlenther Onkol (Epub ahead of print)

  5. Gilbeau L, Octave-Prignot M, Loncol T et al (2001) Comparison of setup accuracy of three different thermoplastic masks for the treatment of brain and head and neck tumors. Radiother Oncol 58(2):155–162

    Article  CAS  PubMed  Google Scholar 

  6. Hui SK, Lusczek E, DeFor T et al (2012) Three-dimensional patient setup errors at different treatment sites measured by the Tomotherapy megavoltage CT. Strahlenther Onkol 188(4):346–352

    Article  CAS  PubMed  Google Scholar 

  7. Jensen AD, Winter M, Kuhn SP et al (2012) Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT. Radiat Oncol 7:51

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kim S, Akpati HC, Li JG et al (2004) An immobilization system for claustrophobic patients in head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 59(5):1531–1539

    Article  PubMed  Google Scholar 

  9. Lee N, Tam M, Lok B et al (2012) The immobilization performance of a novel “open-face” mask used for the setup of claustrophobic patients being treated for head-and-neck cancers. Int J Radiat Oncol Biol Phys 84(3):S858

    Article  Google Scholar 

  10. McKenzie AL, Herk M van, Mijnheer B (2000) The width of margins in radiotherapy treatment plans. Phys Med Biol 45(11):3331–3342

    Article  CAS  PubMed  Google Scholar 

  11. Rotondo RL, Sultanem K, Lavoie I et al (2008) Comparison of repositioning accuracy of two commercially available immobilization systems for treatment of head-and-neck tumors using simulation computed tomography imaging. Int J Radiat Oncol Biol Phys 70(5):1389–1396

    Article  PubMed  Google Scholar 

  12. Sharp L, Lewin F, Johansson H et al (2005) Randomized trial on two types of thermoplastic masks for patient immobilization during radiation therapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 61(1):250–256

    Article  PubMed  Google Scholar 

  13. Sterzing F, Schubert K, Sroka-Perez G et al (2008) Helical tomotherapy. Experiences of the first 150 patients in Heidelberg. Strahlenther Onkol 184(1):8–14

    Article  PubMed  Google Scholar 

  14. Stieler F, Wenz F, Scherrer D et al (2012) Clinical evaluation of a commercial surface-imaging system for patient positioning in radiotherapy. Strahlenther Onkol 188(12):1080–1084

    Article  CAS  PubMed  Google Scholar 

  15. Tryggestad E, Christian M, Ford E et al (2011) Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT. Int J Radiat Oncol Biol Phys 80(1):281–290

    Article  PubMed  Google Scholar 

  16. Herk M van, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47(4):1121–1135

    Article  PubMed  Google Scholar 

  17. Velec M, Waldron JN, O’Sullivan B et al (2010) Cone-beam CT assessment of interfraction and intrafraction setup error of two head-and-neck cancer thermoplastic masks. Int J Radiat Oncol Biol Phys 76(3):949–955

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Mrs. Emilie Cuypers and Mr. Manfred Peinemann for expert application support with the mask materials.

Compliance with ethical guidelines

Conflict of interest. C. Leitzen, T. Wilhelm-Buchstab, S. Garbe, C. Lütter, T. Müdder, B. Simon, H.H. Schild, and H. Schüller state the following: This work was supported by Orfit Industries, Belgium, with free mask materials. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Leitzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitzen, C., Wilhelm-Buchstab, T., Garbe, S. et al. Quality of patient positioning during cerebral tomotherapy irradiation using different mask systems. Strahlenther Onkol 190, 382–385 (2014). https://doi.org/10.1007/s00066-013-0496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0496-x

Keywords

Schlüsselwörter

Navigation