Skip to main content

Advertisement

Log in

Radio-induced apoptosis of peripheral blood CD8 T lymphocytes is a novel prognostic factor for survival in cervical carcinoma patients

Strahleninduzierte Apoptose von CD8-T-Lymphozyten im peripheren Blut ist ein neuer Prognosefaktor für das Überleben von Zervixkarzinompatientinnen

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

A close relationship exists between immune response and tumor behavior. This study aimed to explore the associations between radiation-induced apoptosis (RIA) in peripheral blood lymphocytes (PBL) and clinical pathological variables. Furthermore, it assessed the role of RIA as a prognostic factor for survival in cervical carcinoma patients.

Patients and methods

Between February 1998 and October 2003, 58 consecutive patients with nonmetastatic, localized stage I–II cervical carcinoma who had been treated with radiotherapy (RT) ± chemotherapy were included in this study. Follow-up ended in January 2013. PBL subpopulations were isolated and irradiated with 0, 1, 2 and 8 Gy then incubated for 24, 48 and 72 h. Apoptosis was measured by flow cytometry and the β value, a parameter defining RIA of lymphocytes, was calculated.

Results

Mean follow-up duration was 111.92 ± 40.31 months. Patients with lower CD8 T lymphocyte β values were at a higher risk of local relapse: Exp(B) = 5.137, confidence interval (CI) 95 % = 1.044–25.268, p = 0.044. Similar results were observed for regional relapse: Exp(B) = 8.008, CI 95 % = 1.702–37.679, p = 0.008 and disease relapse: Exp(B) = 6.766, CI 95 % = 1.889–24.238, p = 0.003. In multivariate analysis, only the CD8 T lymphocyte β values were found to be of prognostic significance for local disease-free survival (LDFS, p = 0.049), regional disease-free survival (RDFS, p = 0.002), metastasis-free survival (MFS, p = 0.042), disease-free survival (DFS, p = 0.001) and cause-specific survival (CSS p = 0.028).

Conclusion

For the first time, RIA in CD8 T lymphocytes was demonstrated to be a predictive factor for survival in cervical carcinoma patients.

Zusammenfassung

Hintergrund

Es existiert ein enger Zusammenhang zwischen Immunantwort und Tumorverhalten. Diese Studie hat zum Ziel, das Verhältnis zwischen strahleninduzierter Apoptose („radiation-induced apoptosis“, RIA) von Lymphozyten im peripheren Blut („peripheral blood lymphocytes“, PBL) und klinisch-pathologischen Variablen sowie die Rolle der RIA als Prognoseprädiktor im Bezug auf das Überleben von Zervixkarzinompatientinnen zu untersuchen.

Material und Methode

Zwischen Februar 1998 und Oktober 2003 wurden 58 aufeinanderfolgende Patientinnen mit nichtmetastasiertem, lokalisierten Zervixkarzinom im Stadium I–II, die eine Strahlentherapie ± Chemotherapie erhielten, in diese Studie aufgenommen. Das Follow-up wurde im Januar 2013 abgeschlossen. Die PBL-Untertypen wurden isoliert, mit 0, 1, 2 und 8 Gy bestrahlt und dann für 24, 48 und 72 h inkubiert. Die Apoptose wurde mit Hilfe von Zytometrie und β-Wert, einem Parameter für RIA von Lymphozyten, gemessen.

Ergebnisse

Das mittlere Follow-up der Patientinnen betrug 111,92 ± 40,31 Monate. Patientinnen mit niedrigeren β-Werten der CD8-T-Lymphozyten hatten ein höheres Risiko eines lokalen Rückfalls (Exp(B) = 5,137; 95 %-Konfidenzintervall (KI)  1,044–25,268; p = 0,044). Ähnliche Ergebnisse wurden für regionale Rückfälle (Exp(B) = 8,008; 95 %-KI  1,702–37,679; p = 0,008) und Krankheitsrückfall (Exp(B) = 6,766; 95 %-KI 1,889–24,238; p = 0,003) beobachtet. In der Multivariatenanalyse waren nur die β-Werte der CD8-T-Lymphozyten ein signifikanter Prognosefaktor für ein Überleben ohne lokalen Rückfall (LDFS; p = 0,049), Überleben ohne regionalen Rückfall (RDFS; p = 0,002), Überleben ohne Metastasen (MFS; p = 0,042), krankheitsfreies Überleben (DFS; p = 0,001) und ursachenspezifisches Überleben (CSS; p = 0,028).

Schlussfolgerung

Erstmalig erweist sich die RIA von CD8-T-Lymphozyten als Überlebensprädiktor für Zervixkarzinompatientinnen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

Ig:

Immunoglobulin

PE:

Phycoerythrin

PerCP:

Peridinin chlorophyll protein

CD:

Cluster of differentiation

APC:

Allophycocyanin

PI:

Propidium iodide

FITC:

Fluorescein isothiocyanate

NK:

Natural killer cell

PBS:

Phosphate buffered saline

RPMI 1640:

Roswell Park Memorial Institute medium

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Marnitz S, Kohler C, Rauer A et al (2013) Patterns of care in patients with cervical cancer 2012: results of a survey among German radiotherapy departments and out-patient health care centers. Strahlenther Onkol

  3. Meyn MS (1995) Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 55:5991–6001

    CAS  PubMed  Google Scholar 

  4. Ozsahin M, Ozsahin H, Shi Y et al (1997) Rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes. Int J Radiat Oncol Biol Phys 38:429–440

    Article  CAS  PubMed  Google Scholar 

  5. Buchholz TA (1999) Finding our sensitive patients. Int J Radiat Oncol Biol Phys 45:547–548

    Article  CAS  PubMed  Google Scholar 

  6. Bordon E, Henriquez Hernandez LA, Lara PC et al (2009) Prediction of clinical toxicity in localized cervical carcinoma by radio-induced apoptosis study in peripheral blood lymphocytes (PBLs). Radiat Oncol 4:58

    Article  PubMed Central  PubMed  Google Scholar 

  7. Multhoff G, Trott KR (2013) Screening of gene polymorphisms does not improve predictability of radiation toxicity. Strahlenther Onkol 189:91–92

    Article  CAS  PubMed  Google Scholar 

  8. Greve B, Bolling T, Amler S et al (2012) Evaluation of different biomarkers to predict individual radiosensitivity in an inter-laboratory comparison–lessons for future studies. PLoS One 7:e47185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bordon E, Henriquez-Hernandez LA, Lara PC et al (2011) Role of CD4 and CD8 T-lymphocytes, B-lymphocytes and Natural Killer cells in the prediction of radiation-induced late toxicity in cervical cancer patients. Int J Radiat Biol 87:424–431

    Article  PubMed  Google Scholar 

  10. Bordon E, Henriquez-Hernandez LA, Lara PC et al (2010) Prediction of clinical toxicity in locally advanced head and neck cancer patients by radio-induced apoptosis in peripheral blood lymphocytes (PBLs). Radiat Oncol 5:4

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wasserman J, Blomgren H, Rotstein S et al (1989) Immunosuppression in irradiated breast cancer patients: in vitro effect of cyclooxygenase inhibitors. Bull N Y Acad Med 65:36–44

    CAS  PubMed Central  PubMed  Google Scholar 

  12. North RJ (1986) Radiation-induced, immunologically mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. Preferential elimination of suppressor T cells allows sustained production of effector T cells. J Exp Med 164:1652–1666

    Article  CAS  PubMed  Google Scholar 

  13. Marr LA, Gilham DE, Campbell JD, Fraser AR (2012) Immunology in the clinic review series; focus on cancer: double trouble for tumours: bi-functional and redirected T cells as effective cancer immunotherapies. Clin Exp Immunol 167:216–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Shiao SL, Ganesan AP, Rugo HS, Coussens LM (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25:2559–2572

    Article  CAS  PubMed  Google Scholar 

  15. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  CAS  PubMed  Google Scholar 

  16. Reiss M (1997) Transforming growth factor-beta and cancer: a love-hate relationship? Oncol Res 9:447–457

    CAS  PubMed  Google Scholar 

  17. Roberts AB, Thompson NL, Heine U et al (1988) Transforming growth factor-beta: possible roles in carcinogenesis. Br J Cancer 57:594–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dickson J, Davidson SE, Hunter RD, West CM (2000) Pretreatment plasma TGF beta 1 levels are prognostic for survival but not morbidity following radiation therapy of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 48:991–995

    Article  CAS  PubMed  Google Scholar 

  19. Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lowenthal JW, Harris AW (1985) Activation of mouse lymphocytes inhibits induction of rapid cell death by x-irradiation. J Immunol 135:1119–1125

    CAS  PubMed  Google Scholar 

  21. Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222

    Article  CAS  PubMed  Google Scholar 

  22. Merrick A, Errington F, Milward K et al (2005) Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer 92:1450–1458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wang RF (2008) CD8+ regulatory T cells, their suppressive mechanisms, and regulation in cancer. Hum Immunol 69:811–814

    Article  CAS  PubMed  Google Scholar 

  24. Chaput N, Louafi S, Bardier A et al (2009) Identification of CD8+CD25+Foxp3+suppressive T cells in colorectal cancer tissue. Gut 58:520–529

    Article  CAS  PubMed  Google Scholar 

  25. Kiniwa Y, Miyahara Y, Wang HY et al (2007) CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res 13:6947–6958

    Article  CAS  PubMed  Google Scholar 

  26. Song G, Wang X, Jia J et al (2013) Elevated level of peripheral CD8CD28 T lymphocytes are an independent predictor of progression-free survival in patients with metastatic breast cancer during the course of chemotherapy. Cancer Immunol Immunother

  27. Peng LS, Zhuang Y, Shi Y et al (2012) Increased tumor-infiltrating CD8(+)Foxp3(+) T lymphocytes are associated with tumor progression in human gastric cancer. Cancer Immunol Immunother 61:2183–2192

    Article  CAS  PubMed  Google Scholar 

  28. Ozsahin M, Crompton NE, Gourgou S et al (2005) CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin Cancer Res 11:7426–7433

    Article  CAS  PubMed  Google Scholar 

  29. Burger A, Loffler H, Bamberg M, Rodemann HP (1998) Molecular and cellular basis of radiation fibrosis. Int J Radiat Biol 73:401–408

    Article  CAS  PubMed  Google Scholar 

  30. Anscher MS, Kong FM, Andrews K et al (1998) Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 41:1029–1035

    Article  CAS  PubMed  Google Scholar 

  31. Anscher MS, Kong FM, Marks LB et al (1997) Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys 37:253–258

    Article  CAS  PubMed  Google Scholar 

  32. Anscher MS, Murase T, Prescott DM et al (1994) Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 30:671–676

    Article  CAS  PubMed  Google Scholar 

  33. Assinder SJ, Dong Q, Kovacevic Z, Richardson DR (2009) The TGF-beta, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochem J 417:411–421

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki A, Masuda Y, Ohta Y et al (2001) Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem 276:17871–17877

    Article  CAS  PubMed  Google Scholar 

  35. Henriquez-Hernandez LA, Lloret M, Pinar B et al (2011) BCL-2, in combination with MVP and IGF-1R expression, improves prediction of clinical outcome in complete response cervical carcinoma patients treated by radiochemotherapy. Gynecol Oncol 122:585–589

    Article  CAS  PubMed  Google Scholar 

  36. Gomes LR, Terra LF, Wailemann RA et al (2012) TGF-beta1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer 12:26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Huang LE, Bindra RS, Glazer PM, Harris AL (2007) Hypoxia-induced genetic instability–a calculated mechanism underlying tumor progression. J Mol Med (Berl) 85:139–148

    Google Scholar 

  38. Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    CAS  PubMed  Google Scholar 

  39. Lara PC, Lloret M, Valenciano A et al (2012) Plasminogen activator inhibitor-1 (PAI-1) expression in relation to hypoxia and oncoproteins in clinical cervical tumors. Strahlenther Onkol 188:1139–1145

    Article  CAS  PubMed  Google Scholar 

  40. Fyles AW, Milosevic M, Wong R et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156

    Article  CAS  PubMed  Google Scholar 

  41. Lara PC, Lloret M, Clavo B et al (2009) Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression. Radiat Oncol 4:29

    Article  PubMed Central  PubMed  Google Scholar 

  42. Lara PC, Lloret M, Clavo B et al (2008) Hypoxia downregulates Ku70/80 expression in cervical carcinoma tumors. Radiother Oncol 89:222–226

    Article  CAS  PubMed  Google Scholar 

  43. Chae KS, Kang MJ, Lee JH et al (2011) Opposite functions of HIF-alpha isoforms in VEGF induction by TGF-beta1 under non-hypoxic conditions. Oncogene 30:1213–1228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was subsidized by grants: FIS 1035/98, 0855/01. A. Valenciano was supported by an educational grant from the Instituto Canario de Investigación del Cáncer (ICIC). Special thanks to Barbara Leeb for assistance with the German translation.

Compliance with ethical guidelines

Conflict of interest. R. Ordoñez, L. A. Henríquez-Hernández, M. Federico, A. Valenciano, B. Pinar, M. Lloret, E. Bordón, C. Rodríguez-Gallego and P.C. Lara state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

All authors have read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.A. Henríquez-Hernández.

Additional information

Rafael Ordoñez and Luis Alberto Henríquez-Hernández contributed equally to this work and share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordoñez, R., Henríquez-Hernández, L., Federico, M. et al. Radio-induced apoptosis of peripheral blood CD8 T lymphocytes is a novel prognostic factor for survival in cervical carcinoma patients. Strahlenther Onkol 190, 210–216 (2014). https://doi.org/10.1007/s00066-013-0488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0488-x

Keywords

Schlüsselwörter

Navigation