Skip to main content

Advertisement

Log in

Adjuvant therapy after resection of brain metastases

Frameless image-guided LINAC-based radiosurgery and stereotactic hypofractionated radiotherapy

Adjuvante Therapie nach Resektion von Hirnmetastasen

Rahmenlose bildgesteuerte LINAC-basierte Radiochirurgie und stereotaktische hypofraktionierte Strahlentherapie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Tumor bed stereotactic radiosurgery (SRS) after resection of brain metastases is a new strategy to delay or avoid whole-brain irradiation (WBRT) and its associated toxicities. This retrospective study analyzes results of frameless image-guided linear accelerator (LINAC)-based SRS and stereotactic hypofractionated radiotherapy (SHRT) as adjuvant treatment without WBRT.

Materials and methods

Between March 2009 and February 2012, 44 resection cavities in 42 patients were treated with SRS (23 cavities) or SHRT (21 cavities). All treatments were delivered using a stereotactic LINAC. All cavities were expanded by ≥ 2 mm in all directions to create the clinical target volume (CTV).

Results

The median planning target volume (PTV) for SRS was 11.1 cm3. The median dose prescribed to the PTV margin for SRS was 17 Gy. Median PTV for SHRT was 22.3 cm3. The fractionation schemes applied were: 4 fractions of 6 Gy (5 patients), 6 fractions of 4 Gy (6 patients) and 10 fractions of 4 Gy (10 patients). Median follow-up was 9.6 months. Local control (LC) rates after 6 and 12 months were 91 and 77 %, respectively. No statistically significant differences in LC rates between SRS and SHRT treatments were observed. Distant brain control (DBC) rates at 6 and 12 months were 61 and 33 %, respectively. Overall survival (OS) at 6 and 12 months was 87 and 63.5 %, respectively, with a median OS of 15.9 months. One patient treated by SRS showed symptoms of radionecrosis, which was confirmed histologically.

Conclusion

Frameless image-guided LINAC-based adjuvant SRS and SHRT are effective and well tolerated local treatment strategies after resection of brain metastases in patients with oligometastatic disease.

Zusammenfassung

Hintergrund

Stereotaktische Radiochirurgie (SRS) des Tumorbettes nach Resektion von Hirnmetastasen ist eine neuartige Strategie, um eine adjuvante Ganzhirnbestrahlung (WBRT) mit ihren Toxizitäten aufzuschieben oder zu vermeiden. Die vorliegende Studie untersucht retrospektiv die Resultate rahmenloser bildgesteuerter SRS und stereotaktischer hypofraktionierter Radiotherapie (SHRT) als adjuvante Behandlung ohne WBRT.

Material und Methoden

Zwischen März 2009 und Februar 2012 wurden 44 Resektionshöhlen von 42 Patienten mit SRS (23 Kavitäten) oder SHRT (21 Kavitäten) bestrahlt. Alle Behandlungen wurden mit einem stereotaktischen Linearbeschleuniger durchgeführt. Alle Kavitäten wurden um ≥ 2 mm zum klinischen Zielvolumen vergrößert.

Ergebnisse

Das mediane Planungszielvolumen (PTV) für SRS betrug 11,1 cm3. Die mediane Verschreibungsdosis für SRS auf den Rand des PTV lag bei 17 Gy. Das mediane PTV für SHRT ergab 22,3 cm3. Es wurden Fraktionierungen von 4-mal 6 Gy (5 Patienten), 6-mal 4 Gy (6 Patienten) und 10-mal 4 Gy (10 Patienten) eingesetzt. Die mediane Nachkontrolldauer betrug 9,6 Monate. Die lokale Kontrollrate nach 6 und 12 Monaten betrug 91 bzw. 77 %. Es wurde kein statistisch signifikanter Unterschied der lokalen Kontrolle zwischen SRS und SHRT festgestellt. Die Kontrollraten bezüglich weiterer zerebraler Metastasen nach 6 und 12 Monaten waren 61 bzw. 33 %. Das Gesamtüberleben nach 6 und 12 Monaten lag bei 87 bzw. 63,5 %, mit einem medianen Gesamtüberleben von 15,9 Monaten. Eine symptomatische und histologisch gesicherte Radionekrose zeigte sich bei einer Patientin, die mit SRS behandelt worden war.

Schlussfolgerungen

Rahmenlose bildgesteuerte adjuvante SRS und SHRT mit einem Linearbeschleuniger sind wirksame und gut verträgliche lokale Behandlungen nach Resektion von Hirnmetastasen in oligometastatischen Patienten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ahn JH, Lee SH, Kim S et al (2012) Risk for leptomeningeal seeding after resection for brain metastases: implication of tumor location with mode of resection. J Neurosurg 116:984–993

    Article  PubMed  Google Scholar 

  2. Baumert BG, Rutten I, Dehing-Oberije C et al (2006) A pathology-based substrate for target definition in radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys 66:187–194

    Article  PubMed  Google Scholar 

  3. Blonigen BJ, Steinmetz RD, Levin L et al (2010) Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 77:996–1001

    Article  PubMed  Google Scholar 

  4. Breneman JC, Steinmetz R, Smith A et al (2009) Frameless image-guided intracranial stereotactic radiosurgery: clinical outcomes for brain metastases. Int J Radiat Oncol Biol Phys 74:702–706

    Article  PubMed  Google Scholar 

  5. Chang SD, Main W, Martin DP et al (2003) An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 52:140–146 (discussion 146–147)

    PubMed  Google Scholar 

  6. Choi CY, Chang SD, Gibbs IC et al (2012) Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control. Int J Radiat Oncol Biol Phys 84:336–342

    Article  PubMed  Google Scholar 

  7. Do L, Pezner R, Radany E et al (2009) Resection followed by stereotactic radiosurgery to resection cavity for intracranial metastases. Int J Radiat Oncol Biol Phys 73:486–491

    Article  PubMed  Google Scholar 

  8. Ernst-Stecken A, Ganslandt O, Lambrecht U et al (2006) Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol 81:18–24

    Article  PubMed  Google Scholar 

  9. Gevaert T, Verellen D, Tournel K et al (2012) Setup accuracy of the Novalis ExacTrac 6DOF system for frameless radiosurgery. Int J Radiat Oncol Biol Phys 82:1627–1635

    Article  PubMed  Google Scholar 

  10. Iwai Y, Yamanaka K, Yasui T (2008) Boost radiosurgery for treatment of brain metastases after surgical resections. Surg Neurol 69:181–186 (discussion 186)

    Article  PubMed  Google Scholar 

  11. Kelly PJ, Lin YB, Yu AY et al (2012) Stereotactic irradiation of the postoperative resection cavity for brain metastasis: a frameless linear accelerator-based case series and review of the technique. Int J Radiat Oncol Biol Phys 82:95–101

    Article  PubMed  Google Scholar 

  12. Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141

    Article  PubMed  Google Scholar 

  13. Korytko T, Radivoyevitch T, Colussi V et al (2006) 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys 64:419–424

    Article  PubMed  Google Scholar 

  14. Martens B, Janssen S, Werner M et al (2012) Hypofractionated stereotactic radiotherapy of limited brain metastases: a single-centre individualized treatment approach. BMC Cancer 12:497

    Article  PubMed  Google Scholar 

  15. Mathieu D, Kondziolka D, Flickinger JC et al (2008) Tumor bed radiosurgery after resection of cerebral metastases. Neurosurgery 62:817–823 (discussion 823–814)

    Article  PubMed  Google Scholar 

  16. Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489

    Article  PubMed  CAS  Google Scholar 

  17. Patel AJ, Suki D, Hatiboglu MA et al (2010) Factors influencing the risk of local recurrence after resection of a single brain metastasis. J Neurosurg 113:181–189

    Article  PubMed  Google Scholar 

  18. Prabhu R, Shu HK, Hadjipanayis C et al (2012) Current dosing paradigm for stereotactic radiosurgery alone after surgical resection of brain metastases needs to be optimized for improved local control. Int J Radiat Oncol Biol Phys 83:e61–e66

    Article  PubMed  Google Scholar 

  19. Roberge D, Souhami L (2010) Tumor bed radiosurgery following resection of brain metastases: a review. Technol Cancer Res Treat 9:597–602

    PubMed  Google Scholar 

  20. Rubin P, Constine LS, Fajardo LF et al (1995) RTOG Late Effects Working Group. Overview. Late Effects of Normal Tissues (LENT) scoring system. Int J Radiat Oncol Biol Phys 31:1041–1042

    Article  PubMed  CAS  Google Scholar 

  21. Rwigema JC, Wegner RE, Mintz AH et al (2011) Stereotactic radiosurgery to the resection cavity of brain metastases: a retrospective analysis and literature review. Stereotact Funct Neurosurg 89:329–337

    Article  PubMed  Google Scholar 

  22. Soffietti R, Kocher M, Abacioglu UM et al (2013) A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol 31:65–72

    Article  PubMed  Google Scholar 

  23. Soltys SG, Adler JR, Lipani JD et al (2008) Stereotactic radiosurgery of the postoperative resection cavity for brain metastases. Int J Radiat Oncol Biol Phys 70:187–193

    Article  PubMed  Google Scholar 

  24. Sperduto PW, Berkey B, Gaspar LE et al (2008) A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys 70:510–514

    Article  PubMed  Google Scholar 

  25. Steinmann D, Maertens B, Janssen S et al (2012) Hypofractionated stereotactic radiotherapy (hfSRT) after tumour resection of a single brain metastasis: report of a single-centre individualized treatment approach. J Cancer Res Clin Oncol

  26. Wang CC, Floyd SR, Chang CH et al (2012) Cyberknife hypofractionated stereotactic radiosurgery (HSRS) of resection cavity after excision of large cerebral metastasis: efficacy and safety of an 800 cGy × 3 daily fractions regimen. J Neurooncol 106:601–610

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. J. Broemme, J. Abu-Isa, R. Kottke, J. Beck, R. Wiest, M. Malthaner, D. Schmidhalter, A. Raabe, D.M. Aebersold and A. Pica state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pica M.D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broemme, J., Abu-Isa, J., Kottke, R. et al. Adjuvant therapy after resection of brain metastases. Strahlenther Onkol 189, 765–770 (2013). https://doi.org/10.1007/s00066-013-0409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0409-z

Keywords

Schlüsselwörter

Navigation