Skip to main content

Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target

Dosimetrische Eigenschaften und Kommissionierung der „Image-beam-line“-Cone-Beam-CT mit einem Kohlenstofftarget


Background and purpose

Accurate patient positioning before radiotherapy is often verified using advanced imaging techniques such as cone-beam computed tomography (CBCT). Even for dedicated imaging beam lines, the applied dose is not necessarily negligible with respect to the treatment dose and should be considered in the treatment plan.

Materials and methods

This study presents measurements of the beam properties of the Siemens kView (Siemens AG, Munich, Germany) image beam line (IBL) and the commissioning in the Philips Pinnacle3 treatment planning system (TPS; Philips, Amsterdam, Netherlands).


The percent depth dose curve reaches its maximum at a depth of 10 mm, with a surface dose of 44 %. The IBL operates in flattening filter-free mode, showing the characteristic dose falloff from the central axis. Stability over several days to months is within less than 2 % dose deviation or 1 mm distance-to-agreement. Modelling of the IBL beam line was performed using the Pinnacle3 automatic modelling routine, with absolute dosimetric verification and film measurements of the fluence distribution.


After commissioning of the IBL beam model, the dose from the imaging IBL CBCT can be calculated. Even if the absolute dose deposited is small, repeated imaging doses may sum up to significant amounts and can shift the position of the dose maximum by several centimetres.


Hintergrund und Ziel

Zur präzisen Lagerungskontrolle der Patienten werden in der Strahlentherapie vor der Bestrahlung fortgeschrittene Bildgebungsmethoden wie Cone-Beam-CT (CBCT) verwendet. Die dabei abgestrahlte Dosis ist nicht unbedingt vernachlässigbar und sollte deshalb im Behandlungsplan eingerechnet werden.

Material und Methode

Es werden Messungen der Strahleigenschaften des Siemens-kView-IBL („image beam line“; Siemens AG, München, Deutschland) und der Kommissionierung im Pinnacle3-Planungssystem von Philips (TPS, „treatment planning system“; Philips, Amsterdam, Niederlande) vorgestellt.


Die Tiefendosiskurve erreicht in 10 mm Tiefe ihr Maximum; die prozentuale Oberflächendosis beträgt 44 %. Die IBL hat die charakteristischen konischen Profile ohne Glättungsfilter („flattening filter-free beams“). Die Stabilität über Zeiträume von Tagen bis Monaten beträgt weniger als 2 % der Dosiswerte oder 1 mm Verschiebung bis zur Übereinstimmung. Die Modellierung mit dem automatischen Modellierungsalgorithmus in Pinnacle3 gelingt mit ausreichender Präzision und ist dosimetrisch verifizierbar.


Nach erfolgreicher Kommissionierung des IBL-Beam-Modells kann die Bildgebungsdosis in den Behandlungsplan eingerechnet werden. Der Absolutbetrag der Dosis eines CBCT ist klein. Bei häufiger Bildgebung kann die akkumulierte Dosis signifikant werden und zu einer deutlichen Verschiebung des Dosismaximums führen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Alaei P, Ding G, Guan H (2010) Inclusion of the dose from kilovoltage cone beam CT in therapy treatment plans. Med Phys 37(1):244–248

    PubMed  Article  Google Scholar 

  2. 2.

    Amer A, Marchant T, Sykes J et al (2007) Imaging doses from the elekta synergy X-ray cone beam CT system. BJR 80:476–482

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Beltran C, Lukose R, Gangadharan B et al (2009) Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J Appl Clin Med Phys 10(3):37–48

    Article  Google Scholar 

  4. 4.

    Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV Cone-Beam CT-Based IGRT. Strahlenther Onkol 187(5):284–291

    PubMed  Article  Google Scholar 

  5. 5.

    Breitbach EK, Maltz JS, Gangadharan B et al (2011) Image quality improvement in megavoltage cone-beam CT using an imaging beam line and a sintered pixelated array system. Med Phys 38(11):5969–5979

    PubMed  Article  Google Scholar 

  6. 6.

    Connell T, Robar JL (2010) Low-Z target optimization for spatial resolution improvement in megavoltage imaging. Med Phys 37(1):124–131

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Ding GX, Coffey CW (2009) Radiation Dose from kilovoltage cone beam computed tomography in and image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73(2):610–617

    PubMed  Article  Google Scholar 

  8. 8.

    Dzierma Y, Licht N, Nuesken F, Ruebe C (2012) Beam properties and stability of a flattening-filter free 7 MV beam—an overview. Med Phys 39(5):2595–2602

    PubMed  Article  Google Scholar 

  9. 9.

    Faddegon BA, Wu V, Pouliot J et al (2008) Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target. Med Phys 35(12):5777–5786

    PubMed  Article  Google Scholar 

  10. 10.

    Faddegon BA, Aubin M, Bani-Hashemi A et al (2010) Comparison of patient megavoltage cone beam CT images acquired with an unflattened beam from a carbon target and a flattened treatment beam. Med Phys 37(4):1737–1741

    PubMed  Article  Google Scholar 

  11. 11.

    Flynn RT, Hartmann J, Bani-Hashemi A et al (2009) Dosimetric characterization and application of an imaging beam line with a carbon electron target for megavoltage cone beam computed tomography. Med Phys 36(6):2181–2192

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Gayou O, Parda DS, Johnson M, Miften M (2007) Patient dose and image quality from mega-voltage cone beam computed tomography imaging. Med Phys 34(2):499–506

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Isambert A, Ferreira IH, Bossi A et al (2009) Dose délivrée au patient lors de l’acquisition d’images par tomographie conique de haute énergie. Cancer/Radiothérapie 13:358–364 (article in French)

    Google Scholar 

  14. 14.

    Islam MK, Purdie TG, Norrlinger BD et al (2006) Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33(6):1573–1782

    PubMed  Article  Google Scholar 

  15. 15.

    Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. IJROBP 53(5):1337–1349

    Google Scholar 

  16. 16.

    Jaffray DA, Drake DG, Moreau M et al (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of the bone and soft-tissue targets. IJROBP 45(3):773–789

    CAS  Google Scholar 

  17. 17.

    Miften M, Gayou O, Reiz B et al (2007) IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging. Med Phys 34(10):3760–3767

    PubMed  Article  Google Scholar 

  18. 18.

    Mohan R, Chui C (1985) Energy and angular distributions of photons from medical linear accelerators. Med Phys 12(5):592–597

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Morin O, Chen J, Aubin M et al (2007) Dose calculation using megavoltage cone-beam CT. Int J Radiat Oncol Biol Phys 67(4):1201–1210

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Morin O, Gillis A, Descovich M et al (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34(5):1819–1827

    PubMed  Article  Google Scholar 

  21. 21.

    Ostapiak OZ, O’Brien PF, Faddegon BA (1998) Megavoltage imaging with low Z targets: implementation and characterization of an investigational system. Med Phys 25(10):1910–1918

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Robar JL, Connell T, Huang W, Kelly RG (2009) Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation. Med Phys 36(9):3955–3963

    PubMed  Article  Google Scholar 

  23. 23.

    Roberts DA, Hansen VN, Niven AC et al (2008) A low Z linac and flat panel imager: comparison with the conventional imaging approach. Phys Med Biol 53:6305–6319

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Roberts DA, Hansen VN, Thompson MG et al (2011) Comparative study of a low-Z cone-beamk computed tomography system. Phys Med Biol 56:4453–4464

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Spezi E, Downes P, Jarvis R et al (2011) Patient-specific three-dimensional concomitant dose from cone beam computed tomography exposure in image-guided radiotherapy. IJROBP 83(1):419–426

    Google Scholar 

  26. 26.

    Steil V, Röhner F, Schneider F et al (2012) Aktuelle Anforderungen an das Bildmanagement in der Strahlentherapie. Strahlenther Onkol 188(5):499–506

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Zabel-du Bois A, Nill S, Ulrich S et al (2012) Dosimetric integration of daily mega-voltage cone-beam CT for image-guided intensity-modulated radiotherapy. Strahlenther Onkol 188(2):120–126

    Article  Google Scholar 

Download references


Many thanks to Georg Blass for his assistance with the TLD measurements, to Stephanie Kremp for her help in printing out the Pinnacle3 results and to Achim Elzer for providing technical details on the IBL and flat panel. We thank the associate editor and an anonymous reviewer for helpful comments on this manuscript.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information



Corresponding author

Correspondence to Y. Dzierma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dzierma, Y., Nuesken, F., Licht, N. et al. Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target. Strahlenther Onkol 189, 566–572 (2013).

Download citation


  • Intensity-modulated radiation therapy
  • Dose distribution
  • Organs at risk
  • Imaging
  • Radiosurgery


  • Intensitätsmodulierte Strahlentherapie
  • Dosisverteilung
  • Risikoorgane
  • Bildgebung
  • Radiochirurgie