Skip to main content

Stereotactic body radiotherapy for pulmonary metastases

Prognostic factors and adverse respiratory events

Stereotaktische Körperstrahlentherapie von Lungenmetastasen

Prognostische Faktoren und unerwünschte respiratorische Zwischenfälle

Abstract

Purpose

The aim of this retrospective study was to evaluate the feasibility, safety, and effectiveness of stereotactic body radiotherapy (SBRT) for pulmonary metastases.

Patients and methods

Between April 2007 and March 2011, 87 patients underwent SBRT for pulmonary metastases using the in-house Air-Bag SystemTM to obtain the four-dimensional image for treatment planning and to reduce intrafractional intrathoracic organ motion with abdominal compression to reduce the risk of radiation pneumonitis. Survival and respiratory adverse events were analyzed.

Results

The 2- and 3-year overall survival (OS) rates were 47 and 32 %, and the corresponding cause-specific survivals were 52 and 36 %. The 2- and 3-year OS rates were 57 and 49 % for patients in group 1, respectively, while the corresponding OS rates were 48 and 21 %, and 40 and 32 % for patients in groups 2 and 3, respectively. The 2- and 3-year local control (LC) rates were 80 and 80 %, respectively. The corresponding intrathoracic progression-free survival rates were 40 and 32 %, respectively. Concerning adverse respiratory events after SBRT for pulmonary metastases, 14 % were grade 0 (G0), 66 % G1, 13 % G2, 6 % G3, and 1 % G4. Concerning the adverse respiratory events (NCI-CTC) by grade scale, 1- and 2-year cumulative probabilities of radiation pneumonitis were 12 and 20 % for G2 and 4 and 10 % for G3/4, respectively. The mean values for cumulative V20 were 11.6 ± 8.5 %, 29.8 ± 18.6 %, and 25.7 ± 12.8 % in G0/1, G2, and G3/4, respectively. The number of pulmonary metastases that could be safely treated with SBRT was 6 PTVs (or seven gross tumor volumes) within a cumulative V20 of 30 % under the restricted intrafractional respiratory tumor motion using the Air-Bag SystemTM.

Conclusion

We propose that the number of pulmonary metastases that can be safely treated with SBRT is 6 PTVs with a cumulative V20 of 30 % under the restricted respiratory tumor motion using the Air-Bag SystemTM. SBRT for pulmonary metastases offers locally effective treatment for recurrent or residual lesions after first line chemotherapy.

Zusammenfassung

Ziel

Das Ziel dieser retrospektiven Studie war es, die Durchführbarkeit, Sicherheit und Effektivität der stereotaktischen Strahlentherapie („stereotactic body radiotherapy“, SBRT) für Lungenmetastasen auszuwerten.

Patienten und Methoden

Zwischen April 2007 und März 2011 durchliefen 87 Patienten die SBRT für Lungenmetastasen unter Verwendung eines hauseigenen Air-Bag-SystemsTM, um 4-D-CT-Bilder zur Erleichterung der Behandlungsplanung zu erhalten und die intrafraktionäre intrathorakale Organbewegung durch abdominelle Kompression zu verringern, um so das Risiko einer Strahlenpneumonitis zu reduzieren. Das Überleben sowie unerwünschte respiratorische Zwischenfälle wurden analysiert.

Ergebnisse

Die 2- und 3-Jahres-Gesamtüberlebensraten (OS) betrugen 47 und 32 %, die entsprechenden fallspezifischen Überlebensraten lagen bei 52 und 36 %. Die 2- und 3-Jahres-OS betrugen für Patienten in Gruppe 1 jeweils 57 und 49 %, für Patienten in den Gruppen 2 und 3 jeweils 48 und 21 % sowie 40 und 32 %. Die 2- und 3-Jahresraten der lokalen Kontrolle (LK) lagen jeweils bei 80 und 80 %. Die entsprechenden intrathorakalen progressionsfreien Überlebensraten ergaben jeweils 40 und 32 %. Bezüglich der unerwünschten respiratorischen Ereignisse nach der SBRT der Lungenmetastasen waren 14 % G0, 66 % G1, 13 % G2, 6 % G3 und 1 % G4. Bezüglich der unerwünschten respiratorischen Ereignisse (NCI-CTC) nach Gradskala betrugen die kumulativen 1- und 2-Jahres-Wahrscheinlichkeiten für eine Strahlenpneumonie jeweils 12 und20 % für G2 und 4 und 10 % für G3/4. Der Mittelwert des kumulativen V20 betrug 11,6 ± 8,5 % in G0/1, 29,8 ± 18,6 % in G2 und 25,7 ± 12,8 % in G3/4. Die Anzahl der Lungenmetastasen, die mit SBRT sicher behandelt werden konnten, betrug 6 PTVs („planning target volume“ oder 7 GTVs, „gross tumor volume“) innerhalb des kumulativen V20 von 30 % unter der mit Hilfe des Air-Bag-Systems eingeschränkten intrafraktionären respiratorischen Tumorbewegung.

Schlussfolgerung

Die Anzahl an geheilten Lungenmetastasen, die mit SBRT behandelt werden konnten, lag bei 6 PTVs mit einem kumulativen V20 von 30 % mit eingeschränkter respiratorischer Tumorbewegung durch das Air-Bag-System. Die SBRT für Lungenmetastasen bietet eine effektive Behandlungsmöglichkeit für wiederkehrende oder verbleibende Läsionen nach der „First-line“-Chemotherapie.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Blomgren H, Lax I, Göranson H et al (1998) Radiosurgery for tumors in the body: clinical experience using a new method. J Radiosurg 1:63–74

    Article  Google Scholar 

  2. 2.

    Cancer statistics in Japan (2013) Survival rate, data from population-based cancer registries (Diagnosed in 2000–02) http://ganjoho.jp/data/public/statistics/backnumber/2011/files/fig07.pdf. Accessed 06 Feb 2013

  3. 3.

    Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0 Published: May 28, 2009 (v4.03:Jun. 14, 2010). 2011.12.17. http://www.jcog.jp/doctor/tool/CTCAEv4J_20111217_version.pdf. Accessed 06 Feb 2013

  4. 4.

    Ernst-Stecken A, Lambrecht U, Mueller R et al (2006) Hypofractionated stereotactic radiotherapy for primary and secondary intrapulmonary tumors: first results of a phase I/II study. Strahlenther Onkol 182:696–702

    PubMed  Article  Google Scholar 

  5. 5.

    Gademann G, Ricke J (2012) Advances in imaging guided therapy—Germany. 16th Workshop of the German-Japanese Radiological Affiliation (Münster). May 26, 2012 (Oral presentation)

  6. 6.

    Graham MV, Purdy JA, Emami B et al (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Guckenberger M, Kavanagh A, Partridge M (2012) Combining advanced radiotherapy technologies to maximize safety and tumor control probability in stage III non-small cell lung cancer. Strahlentherapie und Onkologie 188:894–900

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Hiraoka M, Matsuo Y, Takayama K (2010) Stereotactic body radiation therapy for lung cancer: achievements and perspectives. Jpn J Clin Oncol 40:846–854

    PubMed  Article  Google Scholar 

  9. 9.

    Hof H, Hoess A, Oetzel D et al (2007) Stereotactic single-dose radiotherapy of lung metastases. Strahlenther Onkol 183:673–678

    PubMed  Article  Google Scholar 

  10. 10.

    Imamura F, Ueno K, Kusunoki Y et al (2006) High-dose-rate brachytherapy for small-sized peripherally located lung cancer. Strahlenther Onkol 182:703–707

    PubMed  Article  Google Scholar 

  11. 11.

    Jereczek-Fossa BA, Kowalczyk A, D’Onofrio A et al (2008) Three-dimensional conformal or stereotactic reirradiation of recurrent, metastatic or new primary tumors. Analysis of 108 patients. Strahlenther Onkol 184:36–40

    PubMed  Article  Google Scholar 

  12. 12.

    Kamino Y, Takayama K, Kokubo M et al (2006) Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int J Radiat Oncol Biol Phys 66:271–278

    PubMed  Article  Google Scholar 

  13. 13.

    Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874–3900

    PubMed  Article  Google Scholar 

  14. 14.

    Kim MS, Yoo SY, Cho CK et al (2009) Stereotactic body radiation therapy using three fractions for isolated lung recurrence from colorectal cancer. Oncology 76:212–219

    PubMed  Article  Google Scholar 

  15. 15.

    Kubo HD, Hill BC (1996) Respiration gated radiotherapy treatment: a technical study. Phys Med Biol 41:83–91

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Kudo M, Ueshima K (2010) Positioning of a molecular-targeted agent, sorafenib, in the treatment algorithm for hepatocellular carcinoma and implication of many complete remission cases in Japan. Oncology 78(Suppl 1):154–166

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Landreneau RJ, De Giacomo T, Mack MJ et al (2000) Therapeutic video-assisted thoracoscopic surgical resection of colorectal pulmonary metastases. Eur J Cardiothorac Surg 18:671–677

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Mageras GS, Pevsner S, Yorke ED et al (2001) Measurement of lung tumor motion using respiratory-correlated CZT. Int J Radiat Oncol Biol Phys 51:304–310

    Google Scholar 

  19. 19.

    Manapov F, Klöcking S, Niyazi M et al (2012) Chemoradiotherapy duration correlates with overall survival in limited disease SCLC patients with poor initial performance status who successfully completed multimodality treatment. Strahlenther Onkol 188:29–34

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Marchand V, Zefkili S, Desrousseaux J et al (2012) Dosimetric comparison of free-breathing and deep inspiration breath-hold radiotherapy for lung cancer. Strahlenther Onkol 188:582–589

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Marks LB, Bentzen SM, Deasy JO et al (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76:S70–S76

    PubMed  Article  Google Scholar 

  22. 22.

    Minohara S, Kanai T, Endo M et al (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47:1097–1103

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Mirri MA, Acangeli G, Benassi M et al (2009) Hypofractionated conformal radiotherapy (HCRT) for primary and metastatic lung cancers with small dimension. Efficacy and toxicity. Strahlenther Onkol 185:27–33

    PubMed  Article  Google Scholar 

  24. 24.

    Miura H, Masai N, Oh R-J et al (2013) Approach to dose definition of the gross tumor volume for lung cancer with respiratory tumor motion. J Radiat Res 54:140–145

    PubMed  Article  Google Scholar 

  25. 25.

    Murphy MJ, Adler Jr JR, Bodduluri M et al (2000) Image-guided radiosurgery for the spine and pancreas. Comput Aided Surg 5:278–288

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Norihisa Y, Nagata Y, Takayama K et al (2008) Stereotactic body radiotherapy for oligometastatic lung tumors. Int J Radiat Oncol Biol Phys 72:398–403

    PubMed  Article  Google Scholar 

  27. 27.

    Ohara K, Okumura T, Akisada M et al (1989) Irradiation synchronized with respiration gate. Int J Radiat Oncol Biol Phys 17:853–857

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Oshiro Y, Aruga T, Tsuboi K et al (2010) Stereotactic body radiotherapy for lung tumors at the pulmonary hilum. Strahlenther Onkol 186:274–279

    PubMed  Article  Google Scholar 

  29. 29.

    Okunieff P, Petersen AL, Philip A et al (2006) Stereotactic body radiation therapy (SBRT) for lung metastases. Acta Oncol 45:808–817

    PubMed  Article  Google Scholar 

  30. 30.

    Onimaru R, Shirato H, Shimizu S et al (2003) Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. Int J Radiat Oncol Biol Phys 56:126–135

    PubMed  Article  Google Scholar 

  31. 31.

    Onishi H, Kuriyama K, Komiyama T et al (2003) A new irradiation system for lung cancer combining linear accelerator, computed tomography, patient self-breath-holding, and patient-directed beam-control without respiratory monitoring devices. Int J Radiat Oncol Biol Phys 56:14–20

    PubMed  Article  Google Scholar 

  32. 32.

    Pennathur A, Abbas G, Qureshi I et al (2009) Radiofrequency ablation for the treatment of pulmonary metastases. Ann Thorac Surg 87:1030–1039

    PubMed  Article  Google Scholar 

  33. 33.

    Rusthoven KE, Kavanagh BD, Burri SH et al (2009) Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J Clin Oncol 27:1579–1584

    PubMed  Article  Google Scholar 

  34. 34.

    Shirato H, Shimizu S, Shimizu T et al (1999) Real-time tumour-tracking radiotherapy. Lancet 353:1331–1332

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Shirato H, Shimizu S, Kitamura K et al (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Shirato H, Suzuki K, Sharp GC et al (2006) Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 64:1229–1236

    PubMed  Article  Google Scholar 

  37. 37.

    Schweikard A, Glosser G, Bodduluri M et al (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5:263–277

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Writing Committee, Pastorino U, Buyse M, Friedel G et al (1997) Long-term results of lung metastatectomy: prognostic analysis based on 5206 cases. The International Registry of Lung Metastases. J Thorac Cardiovasc Surg 113:37–49

    Article  Google Scholar 

  39. 39.

    Tsujino K, Hirota S, Endo M et al (2003) Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 55:110–115

    PubMed  Article  Google Scholar 

  40. 40.

    Wong JW, Sharpe MB et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Wulf J, Hadinger U, Oppitz U et al (2001) Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol 177:645–655

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Wulf J, Haedinger U, Oppitz U et al (2004) Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. Int J Radiat Oncol Biol Phys 60:186–196

    PubMed  Article  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Inoue PhD, MD.

Additional information

This paper was presented at the 16th Workshop of German–Japanese Radiological Affiliation in Münster on 26 May 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Inoue, T., Oh, RJ., Shiomi, H. et al. Stereotactic body radiotherapy for pulmonary metastases. Strahlenther Onkol 189, 285–292 (2013). https://doi.org/10.1007/s00066-012-0290-1

Download citation

Keywords

  • Stereotactic body radiotherapy
  • Pulmonary metastases
  • Air-Bag System
  • Adverse respiratory event

Schlüsselwörter

  • Stereotaktische Körperstrahlentherapie
  • Lungenmetastasen
  • Air-Bag System
  • Respiratorisch ungünstiges Ereignis