Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT?

Linksseitiges Mammakarzinom inklusive Lymphabfluss: Verbessert VMAT die Planqualität gegenüber IMRT?



The aim of the present work was to explore plan quality and dosimetric accuracy of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for lymph node-positive left-sided breast cancer.


VMAT and IMRT plans were generated with the Pinnacle3 V9.0 treatment planning system for 10 lymph node-positive left-sided breast cancer patients. VMAT plans were created using a single arc and IMRT was performed with 4 beams using 6, 10, and 15 MV photon energy, respectively. Plans were evaluated both manually and automatically using ArtiView™. Dosimetric plan verification was performed with a 2D ionization chamber array placed in a full scatter phantom.


Photon energy had no significant influence on plan quality for both VMAT and IMRT. Large variability in low doses to the heart was found due to patient anatomy (range V5 Gy 26.5–95 %). Slightly more normal tissue dose was found for VMAT (e.g., VTissue30% = 22 %) than in IMRT (VTissue30% = 18 %). The manual and ArtiView™ plan evaluation coincided very accurately for most dose metrics (difference < 1 %). In VMAT, 96.7 % of detector points passed the 3 %/3 mm gamma criterion; marginally better accuracy was found in IMRT (98.3 %).


VMAT for node-positive left-sided breast cancer retains target homogeneity and coverage when compared to IMRT and allows maximum doses to organs at risk to be reduced. ArtiView™ enables fast and accurate plan evaluation.



Ziel der Studie war die Evaluierung der Planqualität und der dosimetrischen Genauigkeit von intensitätsmodulierter Strahlentherapie (IMRT) und volumetrisch modulierter Rotationstherapie (VMAT) für Patientinnen mit lymphknotenpositivem linksseitigem Mammakarzinom.


VMAT- und IMRT-Pläne wurden mit dem Pinnacle3-Bestrahlungsplanungssystem (V9.0) für 10 Patientinnen mit lymphknotenpositivem linksseitigem Mammakarzinom generiert. VMAT-Pläne wurden mit einer Rotation, IMRT-Pläne mit 4 Feldern mit jeweils 6, 10 und 15 MV erstellt. Die Planauswertung erfolgte sowohl manuell als auch automatisch mittels ArtiView™. Die Planverifikation wurde mit einer 2-D-Ionisationskammer-Matrix in einem Festkörperphantom durchgeführt.


Die Photonenenergie hat keinen signifikanten Einfluss auf die VMAT- und IMRT-Planqualität. Es wurden aufgrund unterschiedlicher Anatomien große Variationen im Niedrigdosisvolumen des Herzens festgestellt (V5 Gy 26,5–95 %). In VMAT-Plänen wurde ein geringfügig höheres Niedrigdosisvolumen (z. B. VTissue30% = 22 %) als in IMRT-Plänen (VTissue30% = 18 %) ermittelt. Manuelle und automatische Auswertung stimmten für die meisten Parameter sehr genau überein (Abweichung < 1 %). VMAT-Pläne erreichten einen Gamma-Index < 1 (3 mm Abstand und 3 % Dosis) für 96,7 % der Detektorpunkte, geringfügig bessere Präzision erzielten die IMRT-Pläne mit 98,3 %.


VMAT liefert eine ähnliche Dosishomogenität und -abdeckung der Zielvolumina wie IMRT und ermöglicht eine Reduktion der Risikoorgan- und Maximaldosen. Mittels ArtiView™ können Bestrahlungspläne schnell und genau evaluiert werden.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Abo-Madyan Y, Polednik M, Rahn A et al (2008) Improving dose homogeneity in large breasts by IMRT: efficacy and dosimetric accuracy of different techniques. Strahlenther Onkol 184:86–92

    PubMed  Article  Google Scholar 

  2. 2.

    Cotrutz C, Xing L (2003) Segment-based dose optimisation using a genetic algorithm. Phys Med Biol 48:2987–2998

    PubMed  Article  Google Scholar 

  3. 3.

    Dogan N, Cuttino L, Lloyd R et al (2007) Optimized dose coverage of regional lymph nodes in breast cancer- the role of intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 68:1238–1250

    PubMed  Article  Google Scholar 

  4. 4.

    Donovan E, Bleakley N, Denholm E et al (2007) Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol 82:254–264

    PubMed  Article  Google Scholar 

  5. 5.

    Dörr W, Herrmann T (2002) Second primary tumors after radiotherapy for malignancies. Treatment-related parameters. Strahlenther Onkol 178:357–362

    PubMed  Article  Google Scholar 

  6. 6.

    Eppinga E, Lagerwaard F, Verbakel W et al (2010) Volumetric modulated arc therapy for advanced pancreatic cancer. Strahlenther Onkol 186:382–387

    PubMed  Article  Google Scholar 

  7. 7.

    Evans PM, Donovan EM, Partridge M et al (2000) The delivery of intensity modulated radiotherapy to the breast using multiple static fields. Radiother Oncol 57:79–88

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Fogliata A, Clivio A, Nicolini G et al (2007) A treatment planning study using non-coplanar static fields and coplanar arcs for whole breast radiotherapy of patients with concave geometry. Radiother Oncol 85:346–354

    PubMed  Article  Google Scholar 

  9. 9.

    Freedman GM, Li T, Nicolaou N et al (2009) Breast intensity-modulated radiation therapy reduces time spent with acute dermatitis for women of all breast sizes during radiation. Int J Radiat Oncol Biol Phys 74:689–694

    PubMed  Article  Google Scholar 

  10. 10.

    Georg D, Nyholm T, Olofsson J et al (2007) Clinical evaluation of monitor unit software and the application of action levels. Radiother Oncol 85:306–315

    PubMed  Article  Google Scholar 

  11. 11.

    Georg D, Knöös T, McClean B (2011) Current status and future perspective of flattening filter free photon beams. Med Phys 38:1280–1293

    PubMed  Article  Google Scholar 

  12. 12.

    Goddu SM, Chaudhari S, Mamalui-Hunter M et al (2009) Helical tomotherapy planning for left-sided breast cancer patients with positive lymph nodes: comparison to conventional multiport breast technique. Int J Radiat Oncol Biol Phys 73:1243–1251

    PubMed  Article  Google Scholar 

  13. 13.

    International Commission on Radiation Units and Measurements (ICRU). ICRU Report No. 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT)

  14. 14.

    Jagsi R, Moran J, Marsh R et al (2010) Evaluation of four techniques using intensity-modulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys 78:1594–1603

    PubMed  Article  Google Scholar 

  15. 15.

    Lind PA, Wennberg B, Gagliardi G, Fornander T (2001) Pulmonary complications following different radiotherapy techniques for breast cancer, and the association to irradiated lung volume and dose. Breast Cancer Res Treat 68:199–210

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Lohr F, Heggemann F, Papavassiliu T et al (2009) Is cardiotoxicity still an issue after breast-conserving surgery and could it be reduced by multifield IMRT? Strahlenther Onkol 185:222–230

    PubMed  Article  Google Scholar 

  17. 17.

    Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Nicolini G, Fogliata A, Clivio A et al (2011) Planning strategies in volumetric modulated arc therapy for breast. Med Phys 38:4025–4031

    Article  Google Scholar 

  19. 19.

    Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93:219–222

    PubMed  Google Scholar 

  20. 20.

    Pasler M, Georg D, Wirtz H, Lutterbach J (2011) Effect of photon-beam energy on VMAT and IMRT treatment plan quality and dosimetric accuracy for advanced prostate cancer. Strahlenther Onkol 187:812–819

    PubMed  Article  Google Scholar 

  21. 21.

    Popescu CC, Olivotto IA, Beckham WA et al (2010) Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys 76:287–295

    PubMed  Article  Google Scholar 

  22. 22.

    Rabinovitch R, Ballonoff A, Newman F, Finlayson C (2008) Evaluation of breast sentinel lymph node coverage by standard radiation therapy fields. Int J Radiat Oncol Biol Phys 70:1468–1471

    PubMed  Article  Google Scholar 

  23. 23.

    Sardaro A, Petruzzelli MF, D’Errico MP et al (2012) Radiation-induced cardiac damage in early left breast cancer patients: risk factors, biological mechanisms, radiobiology, and dosimetric constraints. Radiother Oncol 103:133–142

    PubMed  Article  Google Scholar 

  24. 24.

    Singh AK, Lockett MA, Bradley JD (2003) Predictors of radiation-induced esophageal toxicity in patients with non-small cell lung cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 55:337–341

    PubMed  Article  Google Scholar 

  25. 25.

    Spruijt KH, Dahele M, Cuijpers JP et al (2012) Flattening filter free vs flattened beams for breast irradiation. Int J Radiat Oncol Biol Phys 85:506–513

    PubMed  Article  Google Scholar 

  26. 26.

    Stock M, Kroupa B, Georg D (2005) Interpretation and evaluation of the gamma index and the gamma index angle for the verification of IMRT hybrid plans. Phys Med Biol 50:399–411

    PubMed  Article  Google Scholar 

  27. 27.

    Stovall M, Smith S, Langholz B et al (2008) Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys 72:1021–1030

    PubMed  Article  Google Scholar 

  28. 28.

    Subramaniam S, Thirumalaiswamy S, Srinivas C et al (2012) Chest wall radiotherapy with volumetric modulated arcs and the potential role of flattening filter free photon beams. Strahlenther Onkol 188:484–491

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Taylor CW, Nisbet A, McGale P, Darby SC (2007) Cardiac exposures in breast cancer radiotherapy: 1950s–1990s. Int J Radiat Oncol Biol Phys 69:1484–1495

    PubMed  Article  Google Scholar 

  30. 30.

    Thilmann C, Zabel A, Nill S et al (2002) Intensity-modulated radiotherapy of the female breast. Med Dosim 27:79–90

    PubMed  Article  Google Scholar 

  31. 31.

    Thilmann C, Zabel A, Kuhn S et al (2002) Inversely planned intensity modulated radiotherapy for irradiation of a woman with breast cancer and funnel chest. Strahlenther Onkol 178:637–643

    PubMed  Article  Google Scholar 

  32. 32.

    Vandecasteele K, De Neve W, De Gersem W et al (2009) Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Strahlenther Onkol 185:799–807

    PubMed  Article  Google Scholar 

  33. 33.

    Van Esch A, Clermont C, Devillers M et al (2007) On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med Phys 34:3825–3837

    Article  Google Scholar 

  34. 34.

    Wiezorek T, Banz N, Schwedas M et al (2005) Dosimetric quality assurance for intensity-modulated radiotherapy. Feasibility study for a filmless approach. Strahlenther Onkol 181:468–474

    PubMed  Article  Google Scholar 

  35. 35.

    Wiezorek T, Schwahofer A, Schubert K (2009) The influence of different IMRT techniques on the peripheral dose: a comparison between sMLM-IMRT and helical tomotherapy. Strahlenther Onkol 185:969–702

    Article  Google Scholar 

Download references

Conflict of interest statement

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information



Corresponding author

Correspondence to M. Pasler.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pasler, M., Georg, D., Bartelt, S. et al. Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT?. Strahlenther Onkol 189, 380–386 (2013).

Download citation


  • Volumetric modulated arc therapy
  • Intensity-modulated radiotherapy
  • Breast neoplasms
  • Lymph nodes


  • Volumenmodulierte Arc-Therapie
  • Intensitätsmodulierte Strahlentherapie
  • Brustneoplasien
  • Lymphknoten