Skip to main content

Advertisement

Log in

Set-up uncertainty during breast radiotherapy

Image-guided radiotherapy for patients with initial extensive variation

Set-up-Unsicherheit während der Brustbestrahlung

Bildgesteuerte Strahlentherapie für Patienten mit initial umfangreichen Abweichungen

Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to establish a customized strategy for image-guided radiotherapy during whole breast irradiation. Risk factors associated with extensive errors were assessed.

Methods and materials

A series of 176 consecutive breasts in 174 patients were retrospectively assessed. Electronic portal images from 914 medial and 807 lateral directions were reviewed. On the basis of the chest wall, the deviations between the simulation and each treatment were measured. The systematic (Σ) and random error (σ) of population, and the planning target volume (PTV) margin (2 Σ + 0.7σ) were calculated for each direction. Extensive set-up errors were defined as the fraction over the PTV margins in any direction. For extensive set-up errors, χ2 tests and logistic regression analyses were conducted.

Results

The medial and lateral PTV margins for the right–left, superior–inferior, and anterior–posterior axes and the rotation of collimator were 2.6 and 2.4 mm, 4.6 and 4.6 mm, and 3.1 and 3.3 mm and 2.8 and 2.9 ° and cut-off values for extensive errors were 3, 5, and 4 mm and 3 °, respectively. In χ2 tests, tumor in upper outer quadrant (p = 0.012) and chest wall thickness ≥ 2.0 cm (p = 0.003) for medial portals and age group (p = 0.036) for lateral portals were associated with extensive errors. In multivariate tests, the extensive error on the initial fraction had a high probability of extensive set-up errors in both medial (OR = 4.26, p < 0.001) and lateral portals (OR = 3.07, p < 0.001).

Conclusion

In terms of the set-up uncertainty during breast irradiation, patients with extensive error in the initial treatment should be closely observed with serial image-guided radiotherapy.

Zusammenfassung

Ziel

Das Ziel der Studie war es, eine kundenspezifische Strategie für die bildgesteuerte Radiotherapie während der Bestrahlung der gesamten Brust zu entwickeln. Risikofaktoren und damit assoziierte weitreichende Fehler wurden ermittelt.

Patienten und Methoden

Eine Serie von 176 Brüsten von insgesamt 174 Patienten wurde retrospektiv bewertet. Elektronische Portalbilder aus 914 medialen und 807 lateralen Richtungen wurden geprüft. Basierend auf der Brustwand wurden die Abweichungen zwischen der Simulation und jeder Behandlung gemessen. Für jede Richtung wurde der systematische (Σ) und der zufällige Fehler (σ) der Bevölkerungsgruppe sowie die Grenze (2Σ + 0,7σ) des geplanten Zielvolumens (PTV) berechnet. Umfangreiche Set-up-Fehler wurden als Fraktion definiert, welche die PTV-Grenzen in jede Richtung überschreitet. Für weitreichende Set-up-Fehler wurden χ2-Tests und logistische Regressionsanalysen durchgeführt.

Ergebnisse

Die medialen und lateralen PTV-Grenzen für die rechten-linken, superioren-inferioren und anterioren-posterioren Achsen und die Rotation des Kollimators waren jeweils 2,6 und 2,4 mm, 4,6 und 4,6 mm, 3,1 und 3,3 mm sowie 2,8 und 2,9 °. Cut-off-Werte für weitreichende Fehler waren jeweils 3, 5 und 4 mm bzw. 3 °. In den χ2-Tests waren für mediale Portale ein Tumor am oberen äußeren Quadranten (p = 0,012) und die Brustwanddicke ≥ 2,0 cm (p = 0,003) sowie für laterale Portale die Altersgruppe (p = 0,036) mit den weitreichenden Fehlern verbunden. In den multivariaten Tests war ein weitreichender Fehler bei der anfänglichen Fraktion mit einer hohen Wahrscheinlichkeit für umfangreiche Set-up-Fehler in beiden medialen (OR = 4,26; p < 0,001) und lateralen Portalen (OR = 3,07; p < 0,001) verbunden.

Schlussfolerung

Im Hinblick auf die Set-up-Unsicherheit bei der Brustbestrahlung sollten Patienten mit weitreichenden Fehlern während der anfänglichen Behandlung durch serielle bildgesteuerte Radiotherapie genauer beobachtet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bujold A, Craig T, Jaffray D, Dawson LA (2012) Image-guided radiotherapy: has it influenced patient outcomes? Semin Radiat Oncol 22:50–61

    Article  PubMed  Google Scholar 

  2. Cai G, Hu WG, Chen JY et al (2010) Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation. Radiat Oncol 5:96

    Article  PubMed  Google Scholar 

  3. Cao J, Roeske JC, Chmura SJ et al (2009) Calculation and prediction of the effect of respiratory motion on whole breast radiation therapy dose distributions. Med Dosim 34:126–132

    Article  PubMed  Google Scholar 

  4. Chen PY, Wallace M, Mitchell C et al (2010) Four-year efficacy, cosmesis, and toxicity using three-dimensional conformal external beam radiation therapy to deliver accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 76:991–997

    Article  PubMed  Google Scholar 

  5. Chopra S, Dinshaw KA, Kamble R, Sarin R (2006) Breast movement during normal and deep breathing, respiratory training and set up errors: implications for external beam partial breast irradiation. Br J Radiol 79:766–773

    Article  PubMed  CAS  Google Scholar 

  6. Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106

    PubMed  CAS  Google Scholar 

  7. Donovan E, Bleakley N, Denholm E et al (2007) Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol 82:254–264

    Article  PubMed  Google Scholar 

  8. Fatunase T, Wang Z, Yoo S et al (2008) Assessment of the residual error in soft tissue setup in patients undergoing partial breast irradiation: results of a prospective study using cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70:1025–1034

    Article  PubMed  Google Scholar 

  9. Kim LH, Wong J, Yan D et al (2007) On-line localization of the lumpectomy cavity using surgical clips. Int J Radiat Oncol Biol Phys 69:1305–1309

    Article  PubMed  Google Scholar 

  10. Kirby AM, Evans PM, Helyer SJ et al (2011) A randomised trial of supine versus prone breast radiotherapy (SuPr study): comparing set-up errors and respiratory motion. Radiother Oncol 100:221–226

    Article  PubMed  Google Scholar 

  11. McDonald MW, Godette KD, Whitaker DJ et al (2010) Three-year outcomes of breast intensity-modulated radiation therapy with simultaneous integrated boost. Int J Radiat Oncol Biol Phys 77:523–530

    Article  PubMed  Google Scholar 

  12. Offerman S, Lamba M, Lavigne R (2011) Effect of breast volume on treatment reproducibility on a tomotherapy unit in the treatment of breast cancer. Int J Radiat Oncol Biol Phys 80:417–421

    Article  PubMed  Google Scholar 

  13. Pignol JP, Olivotto I, Rakovitch E et al (2008) A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol 26:2085–2092

    Article  PubMed  Google Scholar 

  14. Saliou MG, Giraud P, Simon L et al (2005) Radiotherapy for breast cancer: respiratory and set-up uncertainties. Cancer Radiother 9:414–421

    Article  PubMed  CAS  Google Scholar 

  15. Sijtsema NM, Dijk-Peters FB, Langendijk JA van et al (2012) Electronic portal images (EPIs) based position verification for the breast simultaneous integrated boost (SIB) technique. Radiother Oncol 102:108–114

    Article  PubMed  Google Scholar 

  16. Stroom JC, Boer HC de, Huizenga H, Visser AG et al (1999) Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys 43:905–919

    Article  PubMed  CAS  Google Scholar 

  17. Topolnjak R, Borst GR, Nijkamp J, Sonke JJ (2012) Image-guided radiotherapy for left-sided breast cancer patients: geometrical uncertainty of the heart. Int J Radiat Oncol Biol Phys 82:e647–e655

    Article  PubMed  Google Scholar 

  18. Topolnjak R, Sonke JJ, Nijkamp J et al (2010) Breast patient setup error assessment: comparison of electronic portal image devices and cone-beam computed tomography matching results. Int J Radiat Oncol Biol Phys 78:1235–1243

    Article  PubMed  Google Scholar 

  19. Topolnjak R, Vliet-Vroegindeweij C van, Sonke JJ et al (2008) Breast-conserving therapy: radiotherapy margins for breast tumor bed boost. Int J Radiat Oncol Biol Phys 72:941–948

    Article  PubMed  Google Scholar 

  20. Laan HP van der, Dolsma WV, Schilstra C et al (2010) Limited benefit of inversely optimised intensity modulation in breast conserving radiotherapy with simultaneously integrated boost. Radiother Oncol 94:307–312

    Article  PubMed  Google Scholar 

  21. Mourik A van, Kranen S van, Hollander S den et al (2011) Effects of setup errors and shape changes on breast radiotherapy. Int J Radiat Oncol Biol Phys 79:1557–1564

    Article  PubMed  Google Scholar 

  22. Veldeman L, De Gersem W, Speleers B et al (2012) Alternated prone and supine whole-breast irradiation using IMRT: setup precision, respiratory movement and treatment time. Int J Radiat Oncol Biol Phys 82:2055–2064

    Article  PubMed  Google Scholar 

  23. Vicini F, Winter K, Wong J et al (2010) Initial efficacy results of RTOG 0319: three-dimensional conformal radiation therapy (3D-CRT) confined to the region of the lumpectomy cavity for stage I/II breast carcinoma. Int J Radiat Oncol Biol Phys 77:1120–1127

    Article  PubMed  Google Scholar 

  24. White EA, Cho J, Vallis KA et al (2007) Cone beam computed tomography guidance for setup of patients receiving accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 68:547–554

    Article  PubMed  Google Scholar 

  25. Yang DS, Lee JA, Yoon WS et al (2012) Whole breast irradiation for small-sized breasts after conserving surgery: is the field-in-field technique optimal? Breast Cancer (in press)

  26. Yang TJ, Elkhuizen PH, Minkema D et al (2010) Clinical factors associated with seroma volume reduction in breast-conserving therapy for early-stage breast cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys 76:1325–1332

    Article  PubMed  Google Scholar 

  27. Yoon WS, Yang DS, Lee JA et al (2012) Risk factors related to interfractional variation in whole pelvic irradiation for locally advanced pelvic malignancies. Strahlenther Onkol 188:395–401

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.S. Yoon M.D., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., Yoon, W., Chung, S. et al. Set-up uncertainty during breast radiotherapy. Strahlenther Onkol 189, 315–320 (2013). https://doi.org/10.1007/s00066-012-0271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0271-4

Keywords

Schlüsselwörter

Navigation