Skip to main content

Advertisement

Log in

Prädiktion von Normal- und Tumorreaktion nach Strahlentherapie

Prediction of the reaction of normal tissue and tumor cells to radiotherapy

  • Originalien
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Ang KK, Andratschke NH, Milas L (2004) Epidermal growth factor receptor and response of head-and-neck carcinoma to therapy. Int J Radiat Oncol Biol Phys 58:959–965

    Article  PubMed  CAS  Google Scholar 

  2. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8:545–554

    Article  PubMed  CAS  Google Scholar 

  3. Bentley J, Diggle CP, Harnden P et al (2004) DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Res 32:5249–5259

    Article  PubMed  CAS  Google Scholar 

  4. Borgmann K, Haeberle D, Doerk T et al (2007) Genetic determination of chromosomal radiosensitivities in G0- and G2-phase human lymphocytes. Radiother Oncol 83:196–202

    Article  PubMed  CAS  Google Scholar 

  5. Borgmann K, Hoeller U, Nowack S et al (2008) Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaction after radiotherapy. Int J Radiat Oncol Biol Phys 71:256–264

    Article  PubMed  Google Scholar 

  6. Borgmann K, Roper B, El-Awady R et al (2002) Indicators of late normal tissue response after radiotherapy for head and neck cancer: fibroblasts, lymphocytes, genetics, DNA repair, and chromosome aberrations. Radiother Oncol 64:141–152

    Article  PubMed  CAS  Google Scholar 

  7. Brammer I, Zoller M, Dikomey E (2001) Relationship between cellular radiosensitivity and DNA damage measured by comet assay in human normal, NBS and AT fibroblasts. Int J Radiat Biol 77:929–938

    Article  PubMed  CAS  Google Scholar 

  8. Budach W, Taghian A, Freeman J et al (1993) Impact of stromal sensitivity on radiation response of tumors. J Natl Cancer Inst 85:988–993

    Article  PubMed  CAS  Google Scholar 

  9. Chang-Claude J, Ambrosone CB, Lilla C et al (2009) Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. Br J Cancer 100:1680–1686

    Article  PubMed  CAS  Google Scholar 

  10. Dahm-Daphi J, Dikomey E (1996) Rejoining of DNA double-strand breaks in X-irradiated CHO cells studied by constant- and graded-field gel electrophoresis. Int J Radiat Biol 69:615–621

    Article  PubMed  CAS  Google Scholar 

  11. Dikomey E, Brammer I, Johansen J et al (2000) Relationship between DNA double-strand breaks, cell killing, and fibrosis studied in confluent skin fibroblasts derived from breast cancer patients. Int J Radiat Oncol Biol Phys 46:481–490

    Article  PubMed  CAS  Google Scholar 

  12. Dikomey E, Dahm-Daphi J, Brammer I et al (1998) Correlation between cellular radiosensitivity and non-repaired double-strand breaks studied in nine mammalian cell lines. Int J Radiat Biol 73:269–278

    Article  PubMed  CAS  Google Scholar 

  13. Distel L, Neubauer S, Varon R et al (2003) Fatal toxicity following radio- and chemotherapy of medulloblastoma in a child with unrecognized Nijmegen breakage syndrome. Med Pediatr Oncol 41:44–48

    Article  PubMed  Google Scholar 

  14. Distel LV, Neubauer S, Keller U et al (2006) Individual differences in chromosomal aberrations after in vitro irradiation of cells from healthy individuals, cancer and cancer susceptibility syndrome patients. Radiother Oncol 81:257–263

    Article  PubMed  CAS  Google Scholar 

  15. El-Awady RA, Dikomey E, Dahm-Daphi J (2003) Radiosensitivity of human tumour cells is correlated with the induction but not with the repair of DNA double-strand breaks. Br J Cancer 89:593–601

    Article  PubMed  CAS  Google Scholar 

  16. El-Awady RA, Mahmoud M, Saleh EM et al (2005) No correlation between radiosensitivity or double-strand break repair capacity of normal fibroblasts and acute normal tissue reaction after radiotherapy of breast cancer patients. Int J Radiat Biol 81:501–508

    Article  PubMed  CAS  Google Scholar 

  17. Goodarzi AA, Jeggo P, Lobrich M (2010) The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair (Amst) 9:1273–1282

    Google Scholar 

  18. Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5:387–393

    Article  PubMed  CAS  Google Scholar 

  19. Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  PubMed  CAS  Google Scholar 

  20. Hoeller U, Borgmann K, Bonacker M et al (2003) Individual radiosensitivity measured with lymphocytes may be used to predict the risk of fibrosis after radiotherapy for breast cancer. Radiother Oncol 69:137–144

    Article  PubMed  Google Scholar 

  21. Kasten-Pisula U, Menegakis A, Brammer I et al (2009) The extreme radiosensitivity of the squamous cell carcinoma SKX is due to a defect in double-strand break repair. Radiother Oncol 90:257–264

    Article  PubMed  CAS  Google Scholar 

  22. Kasten-Pisula U, Saker J, Eicheler W et al (2011) Cellular and tumor radiosensitivity is correlated to epidermal growth factor receptor protein expression level in tumors without EGFR amplification. Int J Radiat Oncol Biol Phys 80:1181–1188

    Article  PubMed  CAS  Google Scholar 

  23. Kasten-Pisula U, Tastan H, Dikomey E (2005) Huge differences in cellular radiosensitivity due to only very small variations in double-strand break repair capacity. Int J Radiat Biol 81:409–419

    Article  PubMed  CAS  Google Scholar 

  24. Keller U, Grabenbauer G, Kuechler A et al (2005) Cytogenetic instability in young patients with multiple primary cancers. Cancer Genet Cytogenet 157:25–32

    Article  PubMed  CAS  Google Scholar 

  25. Keller U, Kuechler A, Liehr T et al (2004) Impact of various parameters in detecting chromosomal aberrations by FISH to describe radiosensitivity. Strahlenther Onkol 180:289–296

    Article  PubMed  Google Scholar 

  26. Komuro Y, Watanabe T, Hosoi Y et al (2003) Prediction of tumor radiosensitivity in rectal carcinoma based on p53 and Ku70 expression. J Exp Clin Cancer Res 22:223–228

    PubMed  CAS  Google Scholar 

  27. Lilla C, Ambrosone CB, Kropp S et al (2007) Predictive factors for late normal tissue complications following radiotherapy for breast cancer. Breast Cancer Res Treat 106:143–150

    Article  PubMed  Google Scholar 

  28. Lobrich M, Kuhne M, Wetzel J et al (2000) Joining of correct and incorrect DNA double-strand break ends in normal human and ataxia telangiectasia fibroblasts. Genes Chromosomes Cancer 27:59–68

    Article  PubMed  CAS  Google Scholar 

  29. Mansour WY, Schumacher S, Rosskopf R et al (2008) Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 36:4088–4098

    Article  PubMed  CAS  Google Scholar 

  30. Menegakis A, Eicheler W, Yaromina A et al (2011) Residual DNA double strand breaks in perfused but not in unperfused areas determine different radiosensitivity of tumours. Radiother Oncol 100:137–144

    Article  PubMed  CAS  Google Scholar 

  31. Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 711:61–72

    Article  PubMed  CAS  Google Scholar 

  32. Muller WU, Bauch T, Stuben G et al (2001) Radiation sensitivity of lymphocytes from healthy individuals and cancer patients as measured by the comet assay. Radiat Environ Biophys 40:83–89

    Article  PubMed  CAS  Google Scholar 

  33. Nachtrab U, Oppitz U, Flentje M et al (1998) Radiation-induced micronucleus formation in human skin fibroblasts of patients showing severe and normal tissue damage after radiotherapy. Int J Radiat Biol 73:279–287

    Article  PubMed  CAS  Google Scholar 

  34. Neubauer S, Gebhart E, Schmitt G et al (1996) Is chromosome in situ suppression (CISS) hybridization suited as a predictive test for intrinsic radiosensitivity in cancer patients? Int J Oncol 8:707–712

    PubMed  CAS  Google Scholar 

  35. Popanda O, Ebbeler R, Twardella D et al (2003) Radiation-induced DNA damage and repair in lymphocytes from breast cancer patients and their correlation with acute skin reactions to radiotherapy. Int J Radiat Oncol Biol Phys 55:1216–1225

    Article  PubMed  Google Scholar 

  36. Rodel F, Hoffmann J, Distel L et al (2005) Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 65:4881–4887

    Article  PubMed  Google Scholar 

  37. Rodel F, Reichert S, Sprenger T et al (2011) The role of survivin for radiation oncology: moving beyond apoptosis inhibition. Curr Med Chem 18:191–199

    Article  PubMed  CAS  Google Scholar 

  38. Rosidi B, Wang M, Wu W et al (2008) Histone H1 functions as a stimulatory factor in backup pathways of NHEJ. Nucleic Acids Res 36:1610–1623

    Article  PubMed  CAS  Google Scholar 

  39. Rothkamm K, Kruger I, Thompson LH et al (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715

    Article  PubMed  CAS  Google Scholar 

  40. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100:5057–5062

    Article  PubMed  CAS  Google Scholar 

  41. Rube CE, Dong X, Kuhne M et al (2008) DNA double-strand break rejoining in complex normal tissues. Int J Radiat Oncol Biol Phys 72:1180–1187

    Article  PubMed  Google Scholar 

  42. Rube CE, Grudzenski S, Kuhne M et al (2008) DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Clin Cancer Res 14:6546–6555

    Article  PubMed  Google Scholar 

  43. Rube CE, Lorat Y, Schuler N et al (2011) DNA repair in the context of chromatin: new molecular insights by the nanoscale detection of DNA repair complexes using transmission electron microscopy. DNA Repair (Amst) 10:427–437

    Google Scholar 

  44. Rudat V, Dietz A, Nollert J et al (1999) Acute and late toxicity, tumour control and intrinsic radiosensitivity of primary fibroblasts in vitro of patients with advanced head and neck cancer after concomitant boost radiochemotherapy. Radiother Oncol 53:233–245

    Article  PubMed  CAS  Google Scholar 

  45. Schirmer MA, Brockmoller J, Rave-Frank M et al (2011) A putatively functional haplotype in the gene encoding transforming growth factor beta-1 as a potential biomarker for radiosensitivity. Int J Radiat Oncol Biol Phys 79:866–874

    Article  PubMed  CAS  Google Scholar 

  46. Strasser H, Grabenbauer GG, Sprung CN et al (2007) DNA double-strand break induction and repair in irradiated lymphoblastoid, fibroblast cell lines and white blood cells from ATM, NBS and radiosensitive patients. Strahlenther Onkol 183:447–453

    Article  PubMed  Google Scholar 

  47. Twardella D, Popanda O, Helmbold I et al (2003) Personal characteristics, therapy modalities and individual DNA repair capacity as predictive factors of acute skin toxicity in an unselected cohort of breast cancer patients receiving radiotherapy. Radiother Oncol 69:145–153

    Article  PubMed  CAS  Google Scholar 

  48. Wang H, Perrault AR, Takeda Y et al (2003) Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 31:5377–5388

    Article  PubMed  CAS  Google Scholar 

  49. West CM (1995) Invited review: intrinsic radiosensitivity as a predictor of patient response to radiotherapy. Br J Radiol 68:827–837

    Article  PubMed  CAS  Google Scholar 

  50. Yaromina A, Krause M, Thames H et al (2007) Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother Oncol 83:304–310

    Article  PubMed  CAS  Google Scholar 

  51. Zschenker O, Raabe A, Boeckelmann IK et al (2010) Association of single nucleotide polymorphisms in ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with clinical and cellular radiosensitivity. Radiother Oncol 97:26–32

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dikomey.

Additional information

E. Dikomey, J. Dahm-Daphi und L. Distel haben gleichermaßen zur Arbeit beigetragen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dikomey, E., Dahm-Daphi, J. & Distel, L. Prädiktion von Normal- und Tumorreaktion nach Strahlentherapie. Strahlenther Onkol 188 (Suppl 3), 304–307 (2012). https://doi.org/10.1007/s00066-012-0204-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0204-2

Navigation