Anti-inflammatory effects of low-dose radiotherapy

Indications, dose, and radiobiological mechanisms involved

Entzündungshemmende Effekte von niedrigdosierter Strahlentherapie

Indikationen, Dosis und zugrundeliegende radiobiologische Mechanismen

Abstract

Low-dose radiotherapy (LD-RT) has been used for several benign diseases, including arthrodegenerative and inflammatory pathologies. Despite its effectiveness in clinical practice, little is known about the mechanisms through which LD-RT modulates the various phases of the inflammatory response and about the optimal dose fractionation. The objective of this review is to deepen knowledge about the most effective LD-RT treatment schedule and radiobiological mechanisms underlying the anti-inflammatory effects of LD-RT in various in vitro experiments, in vivo studies, and clinical studies.

Zusammenfassung

Niedrigdosierte Strahlentherapie (LD-RT) wird für die Behandlung verschiedener gutartiger Erkrankungen, einschließlich für arthrodegenerative und entzündliche Erkrankungen verwendet. Obwohl diese in der Praxis effektiv sind, wissen wir noch sehr wenig über die zugrundeliegenden Mechanismen der entzündungshemmenden Wirkung und die optimale Dosisfraktionierung. Das Ziel des Artikels ist es, unser Wissen über LD-RT und die zugrundeliegenden entzündungshemmenden Effekte in verschiedenen In-vitro-Versuchen und In-vivo-Studien sowie in klinischen Studien zu vertiefen.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Adamietz B, Schulz-Wendtland R, Alibek S et al (2010) Calcifying tendonitis of the shoulder joint: predictive value of pretreatment sonography for the response to low-dose radiotherapy. Strahlenther Onkol 186(1):18–23

    PubMed  Article  Google Scholar 

  2. 2.

    Arenas M, Gil F, Gironella M et al (2006) Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice. Int J Radiat Oncol Biol Phys 66(2):560–567

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Arenas M, Gil F, Gironella M et al (2008) Time course of anti-inflammatory effect of low-dose radiotherapy. correlation with TGF-beta(1) expression. Radiother Oncol 86(3):399–406

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Betz N, Ott OJ, Adamietz B et al (2010) Radiotherapy in early-stage Dupuytre’s contracture. Long-terms results after 13 years. Strahlenther Onkol 186(1):82–90

    PubMed  Article  Google Scholar 

  5. 5.

    Brenner DJ, Sachs RK (2006) Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiat Environ Biophys 44:253–256

    PubMed  Article  Google Scholar 

  6. 6.

    Broerse JJ, Jansen JTM, Seegenschmiedt MH (2004) Carcinogenic risks in radiotherapy of benign diseases for head to heel. Radiother Oncol 71(suppl 1):1

    Article  Google Scholar 

  7. 7.

    Budras KD, Hartung K, Munzer BM (1986) Light and electron microscopy studies of the effect of roentgen irradiation on the synovial membrane of the inflamed knee joint. Berl Munch Tierarztl Wochenschr 99:148–152

    PubMed  CAS  Google Scholar 

  8. 8.

    Cannon B, Randolph JG, Murray JE (1959) Malignant irradiation for benign conditions. N Engl J Med 260:197–202

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Cardis E, Vrijheid M, Blettner M et al (2007) The 15-Country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Cardis E, Vrijheid M, Blettner M et al (2005) Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. BMJ 331:77

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Cohen BL (1994) Dose-response relationship for radiation carcinogenesis in the low-dose region. Int Arch Occup Environ Health 66:71–75

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Cohen BL (1995) How dangerous is low level radiation? Risk Anal 15:645–653

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Court-Brawn WM, Doll R (1965) Mortality from cancer and other causes after radiotherapy for ankylosing spondylitis. BMJ 2:1327–1332

    Article  Google Scholar 

  14. 14.

    Crocker I (1999) Radiation therapy to prevent coronary artery restenosis. Semin Radiat Oncol 9:134–143

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Fischer U, Kamprad F, Koch F et al (1998) The effects of low-dose Co-60 irradiation on the course of aseptic arthritis in a rabbit knee joint. Strahlenther Onkol 174:633–639

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Gaipl US, Meister S, Lodermann B et al (2009) Activation-induced cell death and total Akt content of granulocytes show a biphasic course after low-dose rradiation. Autoimmunity 42:340–342

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Ghiassi-Nejad M, Mortazavi SM, Cameron JR et al (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82:87–93

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Ghiassi-Nejad M, Zakeri F, Assaei RG, Kariminia A (2004) Long-term immune and cytogenetic effects of high level natural radiation on Ramsar inhabitants in Iran. J Environ Radioact 74:107–116

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Glatzel M, Fröhlich D, Bäsecke S (2004) Analgesic radiotherapy for osteoarthrosis of digital joints and rhizarthrosis. Radiother Oncol 71:24

    Google Scholar 

  20. 20.

    Glenn JC (1946) Further studies on the effects of X-rays on phagocytic indeces of healthy rabbits. A preliminary report. J Immunol 53:95–100

    PubMed  Google Scholar 

  21. 21.

    Hallahan DE, Kuchibhotla J, Wyble C (1997) Sialyl Lewis X mimetics attenuate E-selectin-mediated adhesion of leukocytes to irradiated human endothelial cells. Radiat Res 147:41–47

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Hertveldt K, Philippe J, Thierens H et al (1997) Flow cytometry as a quantitative and sensitive method to evaluate low dose radiation induced apoptosis in vitro in human peripheral blood lymphocytes. Int J Radiat Biol 71:429–433

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Heyd R, Dorn AP, Herkströter M et al (2010) Radiation therapy for early stages of morbus Ledderhose. Strahlenther Onkol 186(1):24–29

    PubMed  Article  Google Scholar 

  24. 24.

    Hildebrandt G, Loppnow G, Jahns J et al (2003) Inhibition of the iNOS pathway in inflammatory macrophages by low-dose X-irradiation in vitro. Is there a time dependence? Strahlenther Onkol 179:158–166

    PubMed  Article  Google Scholar 

  25. 25.

    Hildebrandt G, Maggiorella L, Rodel F et al (2002) Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int J Radiat Biol 78(4):315–325

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Hildebrandt G, Radlingmayr A, Rosenthal S et al (2003) Low-dose radiotherapy (LD-RT) and the modulation of iNOS expression in adjuvant-induced arthritis in rats. Int J Radiat Biol 79:993–1001

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Hildebrandt G, Seed MP, Freemantle CN et al (1998) Effects of low dose ionizing radiation on murine chronic granulomatous tissue. Strahlenther Onkol 174:580–588

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Howe GR, McLaughlin J (1996) Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivors study. Radiat Res 145:694–707

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Keilholz L, Seegenschmiedt MH, Kutzki D, Sauer R (1995) Periarthritis humeroscapularis (PHS). Indications, technique and outcome of radiotherapy. Strahlenther Onkol 171:379–384

    PubMed  CAS  Google Scholar 

  30. 30.

    Keilholz L, Seegenschmiedt H, Sauer R (1998) Radiotherapy for painful degenerative joint disorders. Indications, technique and clinical results. Strahlenther Onkol 174:243–250

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Kern PM, Keilholz L, Forster C et al (2000) Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro. Radiother Oncol 54:273–282

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kern P, Keilholz L, Forster C et al (1999) In vitro apoptosis in peripheral blood mononuclear cells induced by low-dose radiotherapy displays a discontinuous dose-dependence. Int J Radiat Biol 75:995–1003

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Leer JW, Houtte P van, Seegenschmiedt H (2007) Radiotherapy of non-malignant disorders: where do we stand? Radiother Oncol 83:175–177

    PubMed  Article  Google Scholar 

  34. 34.

    Liebmann A, Hindemith M, Jahns J et al (2004) Low-dose X-irradiation of adjuvant-induced arthritis in rats. Efficacy of different fractionation schedules. Strahlenther Onkol 180:165–172

    PubMed  Article  Google Scholar 

  35. 35.

    Lo TC (1999) Radiation therapy for heterotopic ossification. Semin Radiat Oncol 9:163–170

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Luckey TD (1980) Hormesis with Ionizing radiation. In: CRC Press, Boca Raton

  37. 37.

    Micke O, Seegenschmiedt MH (2004) Radiotherapy in painful heel spurs (plantar fasciitis)–results of a national patterns of care study. Int J Radiat Oncol Biol Phys 58:828–843

    PubMed  Article  Google Scholar 

  38. 38.

    Micke O, Seegenschmiedt MH (2002) Consensus guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513

    PubMed  Article  Google Scholar 

  39. 39.

    Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A et al (2002) Apoptosis induced by low-dose and low-dose-rate radiation. Cancer 94:1210–1214

    PubMed  Article  Google Scholar 

  40. 40.

    Mucke R, Schonekaes K, Micke O et al (2003) Low-dose radiotherapy for painful heel spur. Retrospective study of 117 patients. Strahlenther Onkol 179:774–778

    PubMed  Article  Google Scholar 

  41. 41.

    Mücke R, Seegenschmiedt MH, Heyd R et al (2010) Radiotherapy in painful gonarthrosis. Results of a national patterns-of-care study. Strahlenther Onkol 186(1):7–17

    PubMed  Article  Google Scholar 

  42. 42.

    Muecke R, Micke O, Reichl B et al (2007) Demographic, clinical and treatment related predictors for event-free probability following low-dose radiotherapy for painful heel spurs—a retrospective multicenter study of 502 patients. Acta Oncol 46:239–246

    PubMed  Article  Google Scholar 

  43. 43.

    Nambi KS, Soman SD (1987) Environmental radiation and cancer in India. Health Phys 52:653–657

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Nguyen NP, Krafft SP, Vos P et al (2011) Feasibility of tomotherapy for Grave’s ophthalmopathy: Dosimetry comparison with conventional radiotherapy. Strahlenther Onkol 187(9):568–574

    PubMed  Article  Google Scholar 

  45. 45.

    Panés J, Granger DN (1998) Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 114:1066–1090

    PubMed  Article  Google Scholar 

  46. 46.

    Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154:178–186

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Pokrajac B, Potter R, Wolfram RM et al (2005) Endovascular brachytherapy prevents restenosis after femoropopliteal angioplasty: results of the Vienna-3 randomised multicenter study. Radiother Oncol 74:3–9

    PubMed  Article  Google Scholar 

  48. 48.

    Prasad AV, Mohan N, Chandrasekar B, Meltz ML (1994) Activation of nuclear factor kappa B in human lymphoblastoid cells by low-dose ionizing radiation. Radiat Res 138:367–372

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Rodel F, Frey B, Capalbo G et al (2010) Discontinuous induction of X-linked inhibitor of apoptosis in EA.hy.926 endothelial cells is linked to NF-κB activation and mediates the anti-inflammatory properties of low-dose ionising-radiation. Radiother Oncol 97:346–351

    PubMed  Article  Google Scholar 

  50. 50.

    Rodel F, Hofmann D, Auer J et al (2008) The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol 184:41–47

    PubMed  Article  Google Scholar 

  51. 51.

    Rodel F, Kamprad F, Sauer R, Hildebrandt G (2002) Functional and molecular aspects of anti-inflammatory effects of low-dose radiotherapy. Strahlenther Onkol 178:1–9

    PubMed  Article  Google Scholar 

  52. 52.

    Rodel F, Keilholz L, Hermann M et al (2009) Activator protein 1 shows a biphasic induction and transcriptional activity after low dose X- irradiation in EA.hy.926 endothelial cells. Autoimmunity 42:343–345

    PubMed  Article  Google Scholar 

  53. 53.

    Roedel F, Kley N, Beuscher HU et al (2002) Anti-inflammatory effect of low-dose X-irradiation and the involvement of a TGF-beta1-induced down-regulation of leukocyte/endothelial cell adhesion. Int J Radiat Biol 78:711–719

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Rodel F, Schaller U, Schultze-Mosgau S et al (2004) The induction of TGF-beta(1) and NF-kappaB parallels a biphasic time course of leukocyte/endothelial cell adhesion following low-dose X-irradiation. Strahlenther Onkol 180:194–200

    PubMed  Article  Google Scholar 

  55. 55.

    Ruppert R, Seegenschmiedt MH, Sauer R (2004) Radiotherapy of osteoarthritis. Indication, technique and clinical results. Orthopade 33:56–62

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Sagan LA (1987) What is hormesis and why have not we heard about it before? Health Phys 52:521–525

    PubMed  CAS  Google Scholar 

  57. 57.

    Schaue D, Jahns J, Hildebrandt G, Trott KR (2005) Radiation treatment of acute inflammation in mice. Int J Radiat Biol 81:657–667

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Schaue D, Marples B, Trott KR (2002) The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages. Int J Radiat Biol 78:567–576

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Seegenschmiedt MH, Katalinic A, Makoski HB et al (1999) Radiotherapy of benign diseases: a pattern of care study in Germany. Strahlenther Onkol 175:541–547

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Seegenschmiedt MH, Keilholz L, Martus P et al (1997) Prevention of heterotopic ossification about the hip: final results of two randomized trials in 410 patients using either preoperative or postoperative radiation therapy. Int J Radiat Oncol Biol Phys 39:161–171

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Seegenschmiedt MH, Micke O, Willich N (2004) Radiation therapy for nonmalignant diseases in Germany. Current concepts and future perspectives. Strahlenther Onkol 180:718–730

    PubMed  Article  Google Scholar 

  62. 62.

    Stsjazhko VA, Tsyb AF, Tronko ND et al (1995) Childhood thyroid cancer since accident at Chernobyl. BMJ 310:801

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Trott KR (1994) Therapeutic effects of low radiation doses. Strahlenther Onkol 170:1–12

    PubMed  CAS  Google Scholar 

  64. 64.

    Trott KR, Parker R, Seed MP (1995) The effect of x-rays on experimental arthritis in the rat. Strahlenther Onkol 171:534–538

    PubMed  CAS  Google Scholar 

  65. 65.

    Tubiana M (2005) Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the joint report of the Academie des Sciences (Paris) and of the Academie Nationale de Medecine. Int J Radiat Oncol Biol Phys 63:317–319

    PubMed  Article  Google Scholar 

  66. 66.

    Tubiana M, Aurengo A, Averbeck D, Masse R (2006) The debate on the use of linear no threshold for assessing the effects of low doses. J Radiol Prot 26:317–324

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Von Pannewitz G (1970) Radiotherapy of arthrosis deformans. Method and results. Radiologe 10:51–54

    Google Scholar 

  68. 68.

    Wolff S (1998) The adaptive response in radiobiology: evolving insights and implications. Environ Health Perspect 106(Suppl 1):277–283

    PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Arenas M.D., Ph.D..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arenas, M., Sabater, S., Hernández, V. et al. Anti-inflammatory effects of low-dose radiotherapy. Strahlenther Onkol 188, 975–981 (2012). https://doi.org/10.1007/s00066-012-0170-8

Download citation

Keywords

  • Low-dose radiotherapy
  • Leukocyte
  • Endothelium
  • Adhesion molecules
  • Benign diseases

Schlüsselwörter

  • Niedrigdosierte Strahlentherapie
  • Leukozyten
  • Endothelium
  • Adhäsionsmoleküle
  • Gutartige Erkrankungen