Skip to main content

Advertisement

Log in

Dosimetric comparison of free-breathing and deep inspiration breath-hold radiotherapy for lung cancer

Dosimetrischer Vergleich einer Strahlentherapie bei Lungenkrebs unter freier Atmung und angehaltener Atmung nach tiefer Einatmung

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The goal of this work was to evaluate the potential benefit of deep inspiration breath-hold (DIBH) compared to free breathing (FB) radiotherapy in a homogeneous population of patients with lung cancer.

Methods and materials

A total of 25 patients with non-small cell lung cancer treated by DIBH underwent an additional FB CT scan. The DIBH and FB treatment plans were compared. Target volume was compared using coverage, homogeneity, and conformal indices. Organs at risk were compared using V5, V13, V20, V25, V37, mean dose (Dmean) for lungs, V40 and Dmean for the heart, V50, Dmean and maximum dose (Dmax) for the esophagus, and using biological indices, i.e., the equivalent uniform dose (EUD) and the normal tissue complication probability (NTCP).

Results

Median age was 62 years. Prescribed total dose was 66 Gy. Conformity index was improved with DIBH (0.67 vs. 0.58, p = 0.046) but coverage and homogeneity indices were not significantly different. Lung dosimetric parameters were improved using DIBH: Dmean (13 vs. 15 Gy, p = 10-4), V5 (43 vs. 51%, p = 6.10-5), V13 (31 vs. 38%, p = 2.10-3), V20 (25 vs. 31%, p = 0.01), V25 (22% vs. 27%, p = 0.01) and V37 (12 vs. 16%, p = 0.03), EUD (8.2 vs. 9.9 Gy, p = 3.10-4), and NTCP (1.9 vs. 4.8%, p = 10-3). For the heart, Dmean (14 vs. 17 Gy, p = 0.003), V40 (12 vs. 17%, p = 0.004), and EUD (19 vs. 22 Gy, p = 6.10-4) were reduced with DIBH, whereas V30 and NTCP were similar. DIBH improved the Dmean (28 vs. 30 Gy, p = 0.007) and V50 (25 vs. 30%, p = 0.003) for the esophagus, while EUD, NTCP, and Dmax were not altered.

Conclusion

DIBH improves the target conformity index and heart and lung dosimetry in lung cancer patients treated with radiotherapy. The clinical implications of these findings should be confirmed.

Zusammenfassung

Ziel

Ziel dieser Studie war die Evaluation des potentiellen Vorteils vom Anhalten der Atmung nach tiefer Einatmung („deep inspiration breath-hold“, DIBH) im Vergleich zur freien Atmung („free breathing“, FB) bei der Strahlentherapie in einer homogenen Population von Lungenkrebspatienten.

Methodik und Material

Insgesamt 25 Patienten mit nicht-kleinzelligem Bronchuskarzinom, die mit DIBH behandelt wurden, wurden zusätzlich mittels Computertomografie während freier Atmung untersucht. Nach Erstellen der Dosis-Volumen-Histogramme wurde der Behandlungsplan für DIBH und FB verglichen. Der Vergleich der beiden Techniken wurde aufgrund des Lungenzielvolumens mit folgenden Indizes gemacht: Abdeckung, Homogenität und Konformität. Die kritischen Organe wurden anhand der Parameter V5, V13, V20, V25, V37, durchschnittliche Dosis (Dmittel) für die Lunge, V40 und Dmittel für das Herz, V50, Dmittel und maximale Dosis (Dmax) für den Oesophagus sowie anhand der biologischen Indizes, dem EUD-Konzept („equivalent uniform dose“) und der Wahrscheinlichkeit von normalen Gewebekomplikationen („normal tissue complication probability“, NTCP), verglichen.

Ergebnisse

Das mediane Alter ergab 62 Jahre. Die vorgeschriebene totale Dosis betrug 66 Gy. Bei der Behandlung mit DIBH war der Konformitätsindex signifikant verbessert (0,67 vs. 0,58; p = 0,046), wogegen bei den Indizes der Abdeckung und Homogenität keine signifikanten Unterschiede zu beobachten waren. Bei den kritischen Organen waren die dosimetrischen Lungenparameter verbessert: Dmittel (13 Gy vs. 15 Gy; p = 10-4), V5 (43% vs. 51%; p = 6,10-5), V13 (31% vs. 38%; p = 2,10-3), V20 (25% vs. 31%; p = 0,01), V25 (22% vs. 27%; p = 0,01) und V37 (12% vs. 16%; p = 0,03) sowie der EUD (8,2 Gy vs. 9,9 Gy; p = 3,10-4) und NTCP (1,9% vs. 4,8%; p = 10-3). Im Herz waren bei Behandlung mit DIBH Dmittel (14 Gy vs. 17 Gy; p = 0,003), V40 (12% vs. 17%; p = 0,004) und EUD (19 Gy vs. 22 Gy; p = 6,10-4) reduziert, V30 und NTCP waren vergleichbar zwischen beiden Techniken. Im Oesophagus waren bei der Behandlung mit DIBH Dmittel (28 Gy vs. 30 Gy; p = 0,007) und V50 (25% vs. 30%; p = 0,003) verbessert, während EUD, NTCP und Dmax unverändert blieben.

Schlussfolgerung

Die Strahlentherapie mit DIBH verbessert bei Lungenkrebspatienten den Konformitätsindex sowie die Dosimetrie in Herz und Lunge. Die klinische Auswirkung dieser Ergebnisse muss noch bestätigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anonymous (1999) ICRU, Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). Washington, DC: ICRU; 1999 Report 62, International Commission on Radiation Units and Measurements

  2. Armstrong J, McGibney C (2000) The impact of three-dimensional radiation on the treatment of non-small cell lung cancer. Radiother Oncol 56:157–167

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong JG, Zelefsky MJ, Leibel SA et al (1995) Strategy for dose escalation using 3-dimensional conformal radiation therapy for lung cancer. Ann Oncol 6:693–697

    PubMed  CAS  Google Scholar 

  4. Bradley J (2005) A review of radiation dose escalation trials for non-small cell lung cancer within the Radiation Therapy Oncology Group. Semin Oncol 32:111–113

    Article  Google Scholar 

  5. Chapet O, Khodri M, Jalade P et al (2006) Potential benefits of using non coplanar field and intensity modulated radiation therapy to preserve the heart in irradiation of lung tumors in the middle and lower lobes. Radiother Oncol 80:333–340

    Article  PubMed  Google Scholar 

  6. Chapet O, Kong FM, Lee JS et al (2005) Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer. Radiother Oncol 77:176–181

    Article  PubMed  Google Scholar 

  7. Chapet O, Thomas E, Kessler ML et al (2005) Esophagus sparing with IMRT in lung tumor irradiation: an EUD-based optimization technique. Int J Radiat Oncol Biol Phys 63:179–187

    Article  PubMed  Google Scholar 

  8. Das SK, Chen S, Deasy JO et al (2008) Combining multiple models to generate consensus: application to radiation-induced pneumonitis prediction. Med Phys 35:5098–5109

    Article  PubMed  Google Scholar 

  9. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    Article  PubMed  CAS  Google Scholar 

  10. Feuvret L, Noel G, Nauraye C et al (2004) Conformal index and radiotherapy. Cancer Radiother 8:108–119

    Article  PubMed  CAS  Google Scholar 

  11. Giraud P, Helfre S, Lavole A et al (2002) Non-small-cell bronchial cancers: improvement of survival probability by conformal radiotherapy. Cancer Radiother 6(Suppl 1):125–134

    Article  Google Scholar 

  12. Graham MV, Purdy JA, Emami B et al (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    Article  PubMed  CAS  Google Scholar 

  13. Hanley J, Debois MM, Mah D et al (1999) Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45:603–611

    Article  PubMed  CAS  Google Scholar 

  14. Hernando ML, Marks LB, Bentel GC et al (2001) Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 51:650–659

    Article  PubMed  CAS  Google Scholar 

  15. Kontrisova K, Stock M, Dieckmann K et al (2006) Dosimetric comparison of stereotactic body radiotherapy in different respiration conditions: a modeling study. Radiother Oncol 81:97–104

    Article  PubMed  Google Scholar 

  16. Kovacs A, Hadjiev J, Lakosi F et al (2007) Thermoplastic patient fixation. Influence on chest wall and target motion during radiotherapy of lung cancer. Strahlenther Onkol 183:271–278

    Article  PubMed  Google Scholar 

  17. Kubota K, Furuse K, Kawahara M et al (1994) Role of radiotherapy in combined modality treatment of locally advanced non-small-cell lung cancer. J Clin Oncol 12:1547–1552

    PubMed  CAS  Google Scholar 

  18. Kutcher GJ, Burman C (1989) Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 16:1623–1630

    Article  PubMed  CAS  Google Scholar 

  19. Kutcher GJ, Burman C, Brewster L et al (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21:137–146

    Article  PubMed  CAS  Google Scholar 

  20. Kwa SL, Lebesque JV, Theuws JC et al (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9

    Article  PubMed  CAS  Google Scholar 

  21. Lyman JT, Wolbarst AB (1987) Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13:103–109

    Article  PubMed  CAS  Google Scholar 

  22. Mageras GS, Yorke E (2004) Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiat Oncol 14:65–75

    Article  PubMed  Google Scholar 

  23. Maguire PD, Sibley GS, Zhou SM et al (1999) Clinical and dosimetric predictors of radiation-induced esophageal toxicity. Int J Radiat Oncol Biol Phys 45:97–103

    Article  PubMed  CAS  Google Scholar 

  24. Nedzi LA, Kooy HM, Alexander E III et al (1993) Dynamic field shaping for stereotactic radiosurgery: a modeling study. Int J Radiat Oncol Biol Phys 25:859–869

    Article  PubMed  CAS  Google Scholar 

  25. Niemierko A, Goitein M (1993) Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25:135–145

    Article  PubMed  CAS  Google Scholar 

  26. Oetzel D, Schraube P, Hensley F et al (1995) Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 33:455–460

    Article  PubMed  CAS  Google Scholar 

  27. Rades D, Setter C, Dunst J et al (2010) Prognostic impact of VEGF and VEGF receptor 1 (FLT1) expression in patients irradiated for stage II/III non-small cell lung cancer (NSCLC). Strahlenther Onkol 186:307–314

    Article  PubMed  Google Scholar 

  28. Remouchamps VM, Vicini FA, Sharpe MB et al (2003) Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys 55:392–406

    Article  PubMed  Google Scholar 

  29. Roeder F, Friedrich J, Timke C et al (2010) Correlation of patient-related factors and dose-volume histogram parameters with the onset of radiation pneumonitis in patients with small cell lung cancer. Strahlenther Onkol 186:149–156

    Article  PubMed  Google Scholar 

  30. Shaw E, Kline R, Gillin M et al (1993) Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 27:1231–1239

    Article  PubMed  CAS  Google Scholar 

  31. Simon L, Giraud P, Servois V et al (2006) Comparative study and clinical implementation of two breathing-adapted radiotherapy techniques: dosimetric benefits for lung cancer treatment. Cancer Radiother 10:370–376

    Article  PubMed  CAS  Google Scholar 

  32. Simon L, Giraud P, Servois V (2004) Lung volume as an indicator for reproductibility of deep inspiration breath hold and free breathing radiotherapy [Poster]. ESTRO 23. Amsterdam, The Netherlands

  33. Stranzl H, Zurl B, Langsenlehner T, Kapp KS (2009) Wide tangential fields including the internal mammary lymph nodes in patients with left-sided breast cancer. Influence of respiratory-controlled radiotherapy (4D-CT) on cardiac exposure. Strahlenther Onkol 185:155–160

    Article  PubMed  Google Scholar 

  34. Tsiakalos MF, Theodorou K, Kappas C et al (2004) Analysis of the penumbra enlargement in lung versus the quality index of photon beams: a methodology to check the dose calculation algorithm. Med Phys 31:943–949

    Article  PubMed  Google Scholar 

  35. Tucker SL, Liu HH, Liao Z et al (2008) Analysis of radiation pneumonitis risk using a generalized Lyman model. Int J Radiat Oncol Biol Phys 72:568–574

    Article  PubMed  Google Scholar 

  36. Wang S, Liao Z, Wei X et al (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66:1399–1407

    Article  PubMed  CAS  Google Scholar 

  37. Wei X, Liu HH, Tucker SL et al (2006) Risk factors for acute esophagitis in non-small-cell lung cancer patients treated with concurrent chemotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 66:100–107

    Article  PubMed  Google Scholar 

  38. Wilson EM, Williams FJ, Lyn BE et al (2003) Validation of active breathing control in patients with non-small-cell lung cancer to be treated with CHARTWEL. Int J Radiat Oncol Biol Phys 57:864–874

    Article  PubMed  Google Scholar 

  39. Wurstbauer K, Weise H, Deutschmann H et al (2010) Non-small cell lung cancer in stages I–IIIB. Long-term results of definitive radiotherapy with doses ≥ 80 Gy in standard fractionation. Strahlenther Onkol 186:551–557

    Article  PubMed  Google Scholar 

  40. Yorke ED, Jackson A, Rosenzweig KE et al (2005) Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys 63:672–682

    Article  PubMed  Google Scholar 

  41. Yorke ED, Wang L, Rosenzweig KE et al (2002) Evaluation of deep inspiration breath-hold lung treatment plans with Monte Carlo dose calculation. Int J Radiat Oncol Biol Phys 53:1058–1070

    Article  PubMed  Google Scholar 

  42. Zurl B, Stranzl H, Winkler P, Kapp KS (2010) Quantitative assessment of irradiated lung volume and lung mass in breast cancer patients treated with tangential fields in combination with deep inspiration breath hold (DIBH). Strahlenther Onkol 186:157–162

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Marchand MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, V., Zefkili, S., Desrousseaux, J. et al. Dosimetric comparison of free-breathing and deep inspiration breath-hold radiotherapy for lung cancer. Strahlenther Onkol 188, 582–591 (2012). https://doi.org/10.1007/s00066-012-0129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0129-9

Keywords

Schlüsselwörter

Navigation