Skip to main content
Log in

Advantage of robotic needle placement on a prostate model in HDR brachytherapy

Vorteil der robotergestüzten Nadelapplikation in der HDR - Brachytherapie am Prostatamodell

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Purpose:

To compare the accuracy of the robot-assisted needle positioning with that of the conventional template-guided method with the help of a prostate model in high dose rate (HDR) brachytherapy.

Materials and Methods:

A prostate model of fresh porcine abdomen and special polyvinylchloride (PVC) sheets was developed. To verify the model, deviations from 311 needle placements of real prostate implants were analyzed. Second, the accuracy of the template-guided positioning versus robot-assisted positioning was measured with 20 needle insertions in the model. For robot-assisted positioning, different velocities (2.7, 5.4, 9.8 mm/s) of needle insertion were investigated.

Results:

The average needle positioning accuracies of manual template guidance on the model closely resembled those of real patients (approximately 3 mm). The average needle positioning accuracy for the robot-assisted method on the prostate model was 1.8 ± 0.6 mm, at a velocity of 2.7 mm/s and, in comparison to the template-guided method (2.7 ± 0.7 mm), was statistically more precise (p < 0.001). At higher robotic velocities, the measured needle positioning accuracy showed no significant difference from that of the manual insertion procedure.

Conclusion:

By employing a prostate model, we showed for the first time that robot-assisted needle placement for HDR brachy-therapy is significantly more precise than the conventional method at a velocity of 2.7 mm/s. The robot-assisted needle positioning technique improves the degree of freedom by providing additional oblique insertion channels and could be potentially exploited not only for LDR but also for HDR brachytherapy.

Fragestellung:

Ziel der Arbeit ist der Vergleich der Genauigkeit der Roboter-assistierten mit der Template-gestützten Nadelpositionierung am Prostatamodell.

Material und Methode:

Für die Messung wurde ein Prostatamodell aus frischem Schweinebauch und speziellen PVC-Folien entwickelt. Zur Verifikation des Modells wurde die Genauigkeit der interstitiellen Template-gestützten Nadelpositionierung von 311 Nadeln, die im Rahmen einer HDR-Brachytherapie positioniert wurden, anhand von Ultraschallbildern ermittelt. Danach erfolgte die Messung der Genauigkeit von jeweils 20 Roboter-assistierten Nadelpositionierung mit den Geschwindigkeiten 2,7/5,4/9,8 mm/s und 20 Template-gestützten Nadelpositionierung am Prostatamodell.

Ergebnisse:

Die mittlere Nadelpositionierungsgenauigkeit der manuellen Template-gestützten Nadelapplikation am Modell war mit der Genauigkeit am realen Patienten vergleichbar (≈3mm). Die mittlere Nadelpositionierungsgenauigkeit der Roboter-gestützten Methode am Prostatamodell war mit 1,8 ± 0,6 mm (Geschwindigkeit 2,7 mm/s) signifikant besser als die Template-gestützte manuelle Applikation mit 2.7 ± 0.7 mm. Bei höheren Geschwindigkeiten für die Roboter-gestützte Applikation konnte kein Unterschied in der Positionierungsgenauigkeit im Vergleich zu der manuellen Methode nachgewiesen werden.

Schlussfolgerung:

Die von uns durchgeführte Studie zeigt erstmals einen signifikanten Vorteil der Roboter-gestützten Nadelapplikation bei einer Geschwindigkeit von 2,7 mm/s gegenüber der konventionellen Methode am Prostatamodell. Die Roboter-gestützte Nadelapplikation ermöglicht auch schräge Einstichkanäle und erhöht dadurch die Freiheitsgrade der Nadelpositionierung, daher ist sie für die LDR- und auch für die HDR-Brachytherapie sinnvoll.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abolhassani N, Patel R, Moallem M. Trajectory generation for robotic needle insertion in soft tissue. Conf Proc IEEE Eng Med Biol Soc 2004;4:2730–2733.

    PubMed  Google Scholar 

  2. Alterovitz R, Pouliot J, Taschereau R et al. Simulating needle insertion and radioactive seed implantation for prostate brachytherapy. Stud Health Technol Inform 2003;94:19–25.

    PubMed  Google Scholar 

  3. Andreopoulos D, Piatkowiak M, Krenkel B et al. [Combined treatment of localized prostate cancer with HDR-Iridium 192 remote brachytherapy and external beam irradiation]. Strahlenther Onkol 1999;175:387–391.

    Article  PubMed  CAS  Google Scholar 

  4. Block T, Czempiel H, Zimmermann F. Transperineal permanent seed implantation of “low-risk” prostate cancer: 5-year-experiences in 118 patients. Strahlenther Onkol 2006;182:666–671.

    Article  PubMed  Google Scholar 

  5. Cunha JA, Hsu IC, Pouliot J. Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns. Med Phys 2009;36:233–239.

    Article  PubMed  CAS  Google Scholar 

  6. Fichtinger G, Fiene JP, Kennedy CW et al. Robotic assistance for ultrasound-guided prostate brachytherapy. Med Image Anal 2008;12:535–545.

    Article  PubMed  Google Scholar 

  7. Fischer GS, DiMaio SP, Iordachita, II et al. Robotic assistant for transperineal prostate interventions in 3T closed MRI. Med Image Comput Comput Assist Interv 2007;10:425–433.

    PubMed  Google Scholar 

  8. Ghadjar P, Gwerder N, Madlung A et al. Use of gold markers for setup in image-guided fractionated high-dose-rate brachytherapy as a monotherapy for prostate cancer. Strahlenther Onkol 2009;185:731–735.

    Article  PubMed  Google Scholar 

  9. Hermesse J, Biver S, Jansen N et al. A dosimetric selectivity intercomparison of HDR brachytherapy, IMRT and helical tomotherapy in prostate cancer radiotherapy. Strahlenther Onkol 2009;185:736–742.

    Article  PubMed  Google Scholar 

  10. Jacobs H. Experiences with interstitial HDR afterloading therapy in genital and breast cancer. Sonderb Strahlenther Onkol 1988;82:258–262.

    PubMed  CAS  Google Scholar 

  11. Kovacs G, Galalae R, Loch T et al. Prostate preservation by combined external beam and HDR brachytherapy in nodal negative prostate cancer. Strahlenther Onkol 1999;175 Suppl 2:87–88.

    Article  Google Scholar 

  12. Lagerburg V, Moerland MA, Lagendijk JJ et al. Measurement of prostate rotation during insertion of needles for brachytherapy. Radiother Oncol 2005;77:318–323.

    Article  PubMed  Google Scholar 

  13. Lagerburg V, Moerland MA, van Vulpen M et al. A new robotic needle insertion method to minimise attendant prostate motion. Radiother Oncol 2006;80:73–77.

    Article  PubMed  Google Scholar 

  14. Martin T, Baltas D, Kurek R et al. 3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study. Strahlenther Onkol 2004;180:225–232.

    Article  PubMed  Google Scholar 

  15. Martin T, Hey-Koch S, Strassmann G et al. 3D interstitial HDR brachytherapy combined with 3D external beam radiotherapy and androgen deprivation for prostate cancer. Preliminary results. Strahlenther Onkol 2000;176:361–367.

    Article  PubMed  CAS  Google Scholar 

  16. Okamura AM, Simone C, O’Leary MD. Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng 2004;51:1707–1716.

    Article  PubMed  Google Scholar 

  17. Okazawa SH, Ebrahimi R, Chuang J et al. Methods for segmenting curved needles in ultrasound images. Med Image Anal 2006;10:330–342.

    Article  PubMed  Google Scholar 

  18. Patriciu A, Petrisor D, Muntener M et al. Automatic brachytherapy seed placement under MRI guidance. IEEE Trans Biomed Eng 2007;54:1499–1506.

    Article  PubMed  Google Scholar 

  19. Podder T, Clark D, Sherman J et al. Vivo motion and force measurement of surgical needle intervention during prostate brachytherapy. Med Phys 2006;33:2915–2922.

    Article  PubMed  Google Scholar 

  20. Stone NN, Roy J, Hong S et al. Prostate gland motion and deformation caused by needle placement during brachytherapy. Brachytherapy 2002;1:154–160.

    Article  PubMed  Google Scholar 

  21. van den Bergh F, Meertens H, Moonen L et al. The use of a transverse CT image for the estimation of the dose given to the rectum in intracavitary brachytherapy for carcinoma of the cervix. Radiother Oncol 1998;47:85–90.

    Article  PubMed  Google Scholar 

  22. Van Gellekom MP, Moerland MA, Battermann JJ et al. MRI-guided prostate brachytherapy with single needle method-a planning study. Radiother Oncol 2004;71:327–332.

    Article  PubMed  Google Scholar 

  23. Wan G, Wei Z, Gardi L et al. Brachytherapy needle deflection evaluation and correction. Med Phys 2005;32:902–909.

    Article  PubMed  Google Scholar 

  24. Wei Z, Ding M, Downey D et al. Dynamic intraoperative prostate brachytherapy using 3D TRUS guidance with robot assistance. Conf Proc IEEE Eng Med Biol Soc 2005;7:7429–7432.

    PubMed  Google Scholar 

  25. Yu Y, Podder T, Zhang Y et al. Robot-assisted prostate brachytherapy. Med Image Comput Comput Assist Interv 2006;9:41–49.

    PubMed  Google Scholar 

  26. Yu Y, Podder TK, Zhang YD et al. Robotic system for prostate brachytherapy. Comput Aided Surg 2007;12:366–370.

    PubMed  CAS  Google Scholar 

  27. Zelefsky MJ, Yamada Y, Marion C et al. Improved conformality and decreased toxicity with intraoperative computer-optimized transperineal ultrasound-guided prostate brachytherapy. Int J Radiat Oncol Biol Phys 2003;55:956–963.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Strassmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strassmann, G., Olbert, P., Hegele, A. et al. Advantage of robotic needle placement on a prostate model in HDR brachytherapy. Strahlenther Onkol 187, 367–372 (2011). https://doi.org/10.1007/s00066-011-2185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-2185-y

Key Words

Schlüsselwörter

Navigation