Skip to main content

Advertisement

Log in

The combination of hyperthermia or chemotherapy with gimeracil for effective radiosensitization

Hyperthermie oder Chemotherapie in Kombination mit Gimeracil für eine effektive Strahlensensibilisierung

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

5-chloro-2,4-dihydroxypyridine (gimeracil) is a component of the oral fluoropyrimidine derivative S-1. Gimeracil was originally added to S-1 to yield prolonged 5-fluorouracil (5-FU) concentrations in serum and tumor tissues by inhibiting dihydropyrimidine dehydrogenase, which degrades 5-FU. We previously demonstrated that gimeracil enhances the efficacy of radiotherapy through the suppression of homologous recombination (HR) in DNA double strand repair. The goal of this paper was to examine the effects of gimeracil on the sensitivity of anticancer drugs and hyperthermia in order to obtain effective radiosensitization.

Materials and methods

Various cell lines, including DLD 1 (human colon carcinoma cells) and cells deficient in HR or nonhomologous end-joining (NHEJ), were used in clonogenic assays. The survival of these cells after various treatments (e.g., drug treatment, heat treatment, and radiation) was determined based on their colony-forming ability.

Results

Gimeracil enhanced cell-killing effects of camptothecin (CPT), 5-FU, and hydroxyurea. Gimeracil sensitized effects of CPT or 5-FU to cells deficient in HR or NHEJ to a similar extent as in other cells (DLD1 and a parent cell), indicating that its sensitizing mechanisms may be different from inhibition of HR or NHEJ. Combination of gimeracil and CPT or 5-FU sensitized radiation more effectively than each modality alone. Gimeracil also enhanced heat sensitivity at 42°C or more. The degree of heat sensitization with gimeracil increased as the temperature increased, and the combination of gimeracil and heat-sensitized radiation was more effective than each modality alone.

Conclusion

Gimeracil enhanced sensitivity of CPT, 5-FU, and hyperthermia. Combination of these modalities sensitized radiation more efficiently than each modality alone.

Zusammenfassung

Ziel

5-Chlor-2,4-Dihydroxypyridin (Gimeracil) ist eine Komponente des oralen Fluoropyrimidin-Derivats S-1. Gimeracil wird ursprünglich zu S-1 hinzugefügt, um die 5-FU-Konzentrationen in Blutserum und Tumorgewebe länger aufrechtzuerhalten. Dies beruht auf einer Hemmung der Dihydropyrimidin-Dehydrogenase, die 5-FU abbaut. In früheren Untersuchungen konnten wir zeigen, dass Gimeracil die Wirksamkeit der Strahlentherapie durch Unterdrückung der homologen Rekombination (HR) bei der Reparatur von DNA-Doppelstrangbrüchen verbessert. Im vorliegenden Beitrag haben wir die Wirkung von Gimeracil auf die Empfindlichkeit gegenüber Chemotherapeutika und Hyperthermie untersucht, um eine effektive Strahlensensibilisierung zu erzielen.

Material und Methodik

Wir benutzten verschiedene Zelllinien einschließlich DLD-1 (humane Kolonkarzinomzellen) und Zellen mit HR- bzw. einer NHEJ (nichthomologen Endverknüpfung)-Defizienz in klonogenen Tests. Das Überleben dieser Zellen wurde nach verschiedenen Behandlungen wie medikamentöser Behandlung, Wärmebehandlung und Bestrahlung anhand der Koloniebildungsfähigkeit bestimmt.

Ergebnisse

Gimeracil verstärkte die zelltötende Wirkung von Camptothecin (CPT), 5-Fluorouracil (5-FU) und Hydroxyurea. In HR- bzw. NHEJ-defizienten Zellen verstärkte Gimeracil die zelltötende Wirkung von CPT und 5-FU im gleichen Maß wie in anderen Zellen (DLD-1 und Elternzellen). Dies deutet darauf hin, dass hier andere sensibilisierende Mechanismen als bei der Hemmung von HR oder NHEJ zum Tragen kommen. Der kombinierte Einsatz von Gimeracil und CPT bzw. 5-FU bei der Strahlentherapie führte zu einer wirksameren Strahlensensibilisierung als jede Behandlungsmodalität für sich allein. Gimeracil erhöhte auch die Wärmeempfindlichkeit bei Temperaturen ab 42°C. Der Grad der Wärmeempfindlichkeit unter Gimeracil stieg mit zunehmenden Temperaturen. Die Kombination von Gimeracil mit Wärme über 42°C führte zu einer stärkeren Strahlensensibilisierung als jede einzelne Behandlungsmodalität für sich allein.

Schlussfolgerung

Gimeracil erhöhte die Empfindlichkeit für CPT, 5-FU und Hyperthermie. Eine Kombination dieser Modalitäten sensibilisiert für Strahlung effizienter als jede Modalität allein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 2
Fig. 3
Fig. 3
Fig. 4
Fig. 5

References

  1. Eder-Czembirek C, Erovic BM, Czembirek C et al (2010) Betulinic acid a radiosensitizer in head and neck squamous cell carcinoma cell lines. Strahlenther Onkol 186:143–148

    Article  PubMed  Google Scholar 

  2. Ferrara L, Kmiec EB (2004) Camptothecin enhances the frequency of oligonucleotide-directed gene repair in mammalian cell by inducing DNA damage and activating homologous recombination. Nucleic Acids Res 32:5239–5248

    Article  PubMed  CAS  Google Scholar 

  3. Fuller LF, Painter RB (1988) A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication. Mutat Res 193:109–121

    PubMed  CAS  Google Scholar 

  4. Hall EJ (2006) Cell, tissue, and tumor kinetics. In: Hall EJ, Giaccia AM (eds) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp16–29

  5. Harada K, Sato M, Ueyama Y et al (2008) Multi-institutional phase II trial of S-1 in patients with oral squamous cell carcinoma. Anticancer Drugs 19(1):85–90

    Article  PubMed  CAS  Google Scholar 

  6. Hayashi T, Tanaka G, Irimura K et al (1996) Oral single-dose toxicity study of a new antineoplastic agent S-1, and its components, CDHP, and Oxo. J Toxicol Sci 21(Suppl 3):495–504

    Article  PubMed  Google Scholar 

  7. Helleday T, Lo J, Gent DC van et al (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6(7):923–935

    Google Scholar 

  8. Kawahara M, Furuse K, Segawa Y et al (2001) Phase II study of S-1, a novel oral fluorouracil, in advanced non-small-cell lung cancer. Br J Cancer 85(7):939–943

    Article  PubMed  CAS  Google Scholar 

  9. Klenke FM, Abdollahi A, Bischof M et al (2011) Celecoxib enhances radiation response of secondary bone tumors of a human non-small cell lung cancer via antiangiogenesis in vivo. Strahlenther Onkol 187:45–51

    Article  PubMed  Google Scholar 

  10. Koizumi W, Narahara H, Hara T et al (2008) S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol 9(3):215–221

    Article  PubMed  CAS  Google Scholar 

  11. Mantel F, Frey B, Haslinger S et al (2010) Combination of ionizing irradiation and hyperthermia activates programmed apoptotic and necrotic cell death pathways in human colorectal carcinoma cells. Strahlenther Onkol 186:587–599

    Article  PubMed  Google Scholar 

  12. Ohuchida A, Kouchi Y, Sato S et al (1996) Mutagenicity study of a new antineoplastic agent S-1, and its components, CDHP, and Oxo. J Toxicol Sci 21(Suppl 3):675–689

    Article  PubMed  Google Scholar 

  13. Rades D, Nadrowitz R, Buchmann I et al (2010) Radiolabeled cetuximab plus whole-brain irradiation (WBI) for the treatment of brain metastases from non-small cell lung cancer (NSCLC). Strahlenther Onkol 186:458–462

    Article  PubMed  Google Scholar 

  14. Saito H, Grompe M, Neeley TL et al (1994) Fanconi anemia cells have a normal gene structure for topoisomerase I. Hum Genet 93:583–586

    Article  PubMed  CAS  Google Scholar 

  15. Sakuramoto S, Sasako M, Yamaguchi T et al (2007) Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med 357(18):1810–1820

    Article  PubMed  CAS  Google Scholar 

  16. Sanchez-Perez I (2006) DNA repair inihibitors in cancer treatment. Clin Transl Oncol 8:642–646

    Article  PubMed  CAS  Google Scholar 

  17. Shinchi H, Maemura K, Noma H et al (2007) Phase-I trial of oral fluoropyrimidine anticancer agent (S-1) with concurrent radiotherapy in patients with unresectable pancreatic cancer. Br J Cancer 96(9):1353–1357

    PubMed  CAS  Google Scholar 

  18. Shirasaka T, Shimamato Y, Ohshimo H et al (1996) Development of a novel form of an oral 5-fluorouracil derivative (S-1) directed to the potentiation of the tumor selective cytotoxicity of 5-fluorouracil by two biochemical modulators. Anticancer Drugs 7(5):548–557

    Article  PubMed  CAS  Google Scholar 

  19. Singleton BK, Priestley A, Steingrimsdottir H et al (1997) Molecular and biochemical characterization of xrs mutants defective in Ku80. Mol Cell Biol 17(3):1264–1273

    PubMed  CAS  Google Scholar 

  20. Snyder RD (1984) The role of deoxynucleoside triphosphate pools in the inhibition of DNA-excision repair and replication in human cells by hydroxyurea. Mutat Res 131:163–172

    PubMed  CAS  Google Scholar 

  21. Taccioli GE, Gottlieb TM, Blunt T et al (1994) Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265(5177):1442–1445

    Article  PubMed  CAS  Google Scholar 

  22. Tahara M (2006) Concurrent chemoradiotherapy (CRT) with S-1 and cisplatin (CDDP) in patients (pts) with locally advanced head and neck cancer (HNC). Jpn J Cancer Chemo 33(Suppl 1):167–171

    CAS  Google Scholar 

  23. Takagi M, Sakata K, Someya M et al (2010) Gimeracil sensitizes cells to radiation via inhibition of homologous recombination. Radiother Oncol 96:259–266

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi A, Matsumoto H, Nagayama K et al (2004) Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res 64:8839–8845

    Article  PubMed  CAS  Google Scholar 

  25. Takechi T, Fujioka A, Matsushima E et al (2002) Enhancement of the antitumour activityb of 5-fluorouracil (5-FU) by inhibiting dihydropyrimidine dehydrogenase activity (DPD) using 5-chloro-2,4-dihydroxypyridine (CDHP) in human tumour cells. Eur J Cancer 38:1271–1277

    Article  PubMed  CAS  Google Scholar 

  26. Tatsumi K, Fukushima M, Shirasaka T et al (1987) Inhibitory effects of pyrimidine, barbituric acid and pyridine derivatives on 5-fluorouracil degradation in rat liver extracts. Jpn J Cancer Res 78(7):748–755

    PubMed  CAS  Google Scholar 

  27. Van den Brande J, Schoffski P, Schellens JH et al (2003) EORTC Early Clinical Studies Group early phase II trial of S-1 in patients with advanced or metastatic colorectal cancer. Br J Cancer 88(5):648–653

    Article  Google Scholar 

Download references

Conflict of interest

The corresponding author states the following: potential conflicts of interest exist. One of the authors (Dr. M. Fukushima) is an employee of Taiho Pharmaceutical Co., Ltd. Gimeracil was supplied by Taiho Pharmaceutical Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sakata MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, M., Sakata, K., Someya, M. et al. The combination of hyperthermia or chemotherapy with gimeracil for effective radiosensitization. Strahlenther Onkol 188, 255–261 (2012). https://doi.org/10.1007/s00066-011-0043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-0043-6

Keywords

Schlüsselwörter

Navigation