Skip to main content

Advertisement

Log in

Stereotactic radiotherapy in the liver hilum

Basis for future studies

Stereotaktische Strahlentherapie in der Leberpforte

Grundlagen für zukünftige Studien

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

A basis for future trials with stereotactic body radiotherapy (SBRT) for tumors of the liver hilum should be established. Thus, dosage concepts, planning processes, and dose constraints as well as technical innovations are summarized in this contribution.

Methods

On the background of our own data, the current literature was reviewed. The use of SBRT in the most common tumors of the liver hilum (pancreatic cancer and Klatskin tumors) was investigated. Dose constraints were calculated in 2 Gy standard fractionation doses.

Results

A total of 8 pilot or phase I/II studies about SBRT in the liver hilum were identified. In recent years, the SBRT technique has developed very quickly from classical stereotactic body frame radiotherapy to IGRT techniques including gating and tracking systems. In the studies using classical body frame technique, patients experienced considerable toxicities (duodenal ulcer/perforation) as compared to tolerable side effects in IGRT studies (<10% grade 3 and 4 toxicities). Dose constraints for duodenum, liver, kidneys, colon, and spinal cord were derived from the investigated studies. Survival and local tumor control data are very heterogeneous: median survival in these patients with locally advanced pancreatic or Klatskin tumors ranges between 5 and 32 months. Excellent local tumor control rates of about 80% over 24 months were achieved using SBRT.

Conclusion

Despite a few negative results, SBRT seems to be a promising technique in the treatment of tumors of the liver hilum. Highest precision in diagnostics, positioning, and irradiation as well as strict dose constraints should be applied to keep target volumes as small as possible and side effects tolerable.

Zussammenfasung

Hintergrund

Es sollte eine Basis für zukünftige Studien mit Körperstammstereotaxie (SBRT) im Bereich der Leberpforte gelegt werden. Hierfür wurden Dosierungskonzepte, Planungsprozesse und Grenzdosen sowie technische Innovationen betrachtet.

Methoden

Vor dem Hintergrund eigener Daten wurde die aktuelle Literatur zusammengefasst. Die SBRT wurde bei den gängigsten Tumoren der Leberpforte (Pankreaskarzinom und Klatskin-Tumor) untersucht. Grenzdosen wurden für eine 2-Gy-Standardfraktionierung errechnet.

Ergebnisse

Insgesamt wurden 8 Pilot- oder Phase-I/II-Studien über SBRT in der Leberpforte gefunden. In den letzten Jahren hat sich die SBRT sehr schnell von der klassischen Körperstammstrahlentherapie im stereotaktischen Rahmen zur bildgeführten Strahlentherapie (IGRT), einschließlich der Gating- und Tracking-Systeme, weiterentwickelt. Die Patienten in den Studien mit der klassischen Technik erfuhren erhebliche (Ulcera/Perforationen des Duodenums), die in den IGRT-Studien tolerable Nebenwirkungen (Toxizitätsrate Grad 3 und 4 < 10%). Grenzdosen für Duodenum, Leber, Nieren, Kolon und Rückenmark konnten den untersuchten Studien entnommen werden. Die Daten für das Überleben und die lokale Tumorkontrolle sind sehr heterogen: Das mediane Überleben dieser Patienten mit weit fortgeschrittenen Pankreaskarzinomen oder Klatskin-Tumoren betrug zwischen 5 und 32 Monaten. Exzellente Raten für die lokale Tumorkontrolle von etwa 80% über 24 Monate waren mit der SBRT erreichbar.

Zusammenfassung

Trotz einiger negativer Ergebnisse scheint die SBRT eine vielversprechende Technik bei der Behandlung von Tumoren der Leberpforte zu sein. Höchste Präzision bei Diagnostik, Positionierung und Bestrahlung sowie strenge Grenzdosen müssen eingehalten werden, um Zielvolumina möglichst klein und die Nebenwirkungen tolerabel zu halten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Astner ST, Theodoru M, Dobrei-Ciuchendea M et al (2010) Tumor shrinkage assessed by volumetric MRI in the long-term follow-up after stereotactic radiotherapy of meningeomas. Strahlenther Onkol 186:423–429

    Article  PubMed  Google Scholar 

  2. Becker G, Momm F, Schwacha H et al (2005) Klatskin tumor treated by inter-disciplinary therapies including stereotactic radiotherapy: a case report. World J Gastroenterol 11:4923–4926

    PubMed  Google Scholar 

  3. Blomgren H, Lax I, Näslund I, Svanström R (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol 34:861–870

    Article  PubMed  CAS  Google Scholar 

  4. Brunner TB, Eccles CL (2010) Radiotherapy and chemotherapy as therapeutic strategies in extrahepatic biliary duct carcinoma. Strahlenther Onkol 186:672–680

    Article  PubMed  Google Scholar 

  5. Casamassima F, Cavedon C, Francescon P et al (2006) Use of motion tracking in stereotactic body radiotherapy: evaluation of uncertainty in off-target dose distribution and optimization strategies. Acta Oncol 45:943–947

    Article  PubMed  CAS  Google Scholar 

  6. Case RB, Moseley DJ, Sonke JJ et al (2010) Interfraction and intrafraction changes in amplitude of breathing motion in stereotactic liver radiotherapy. Int J Radiat Oncol Biol Phys 77:918–925

    Article  PubMed  Google Scholar 

  7. Chang DT, Schellenberg D, Shen J et al (2009) Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 115:665–672

    Article  PubMed  Google Scholar 

  8. Chang BK, Timmerman RD (2007) Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol 30:637–644

    Article  PubMed  Google Scholar 

  9. Chawla S, Chen Y, Katz AW et al (2009) Stereotactic body radiotherapy for treatment of adrenal metastases. Int J Radiat Oncol Biol Phys 75:71–75

    Article  PubMed  Google Scholar 

  10. Dawson LA, Eccles C, Bissonnette JP, Brock KK (2005) Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control. Int J Radiat Oncol Biol Phys 62:1247–1252

    Article  PubMed  Google Scholar 

  11. Fuss M, Salter BJ, Cavanaugh SX et al (2004) Daily ultrasound-based image-guided targeting for radiotherapy of upper abdominal malignancies. Int J Radiat Oncol Biol Phys 59:1245–1256

    Article  PubMed  Google Scholar 

  12. Goodman KA, Wiegner EA, Maturen KE et al (2010) Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys 78:486–493

    Article  PubMed  Google Scholar 

  13. Herfarth KK, Debus J, Lohr F et al (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys 46:329–335

    Article  PubMed  CAS  Google Scholar 

  14. Herfarth KK, Debus J, Lohr F et al (2001) Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol 19:164–170

    PubMed  CAS  Google Scholar 

  15. Herfarth KK, Debus J, Lohr F et al (2001) Stereotactic irradiation of liver metastases. Radiologe 41:64–68

    Article  PubMed  CAS  Google Scholar 

  16. Hoyer M, Roed H, Sengelov L et al (2005) Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol 76:48–53

    Article  PubMed  Google Scholar 

  17. Jensen AD, Grehn C, Nikoghosyan A et al (2009) Catch me if you can – the use of image guidance in the radiotherapy of an unusual case of esophageal cancer. Strahlenther Onkol 185:469–473

    Article  PubMed  Google Scholar 

  18. Köhler FM, Boda-Heggemann J, Küpper B et al (2009) Phantom measurements to quantify the accuracy of a commercially available cone-beam CT gray-value matching algorithm using multiple fiducials. Strahlenther Onkol 185:49–55

    Article  PubMed  Google Scholar 

  19. Koong AC, Christofferson E, Le QT et al (2005) Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 63:320–323

    Article  PubMed  Google Scholar 

  20. Koong AC, Le QT, Ho A et al (2004) Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 58:1017–1021

    Article  PubMed  Google Scholar 

  21. Kopek N, Holt MI, Hansen AT, Høyer M (2010) Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol 94:47–52

    Article  PubMed  Google Scholar 

  22. Lax I, Blomgren H, Näslund I, Svanström R (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33:677–683

    Article  PubMed  CAS  Google Scholar 

  23. Mahadevan A, Jain S, Goldstein M et al (2010) Stereotactic body radiotherapy and gemcitabine for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 78:735–742

    Article  PubMed  Google Scholar 

  24. Minn AY, Schellenberg D, Maxim P et al (2009) Pancreatic tumor motion on a single planning 4D-CT does not correlate with intrafraction tumor motion during treatment. Am J Clin Oncol 32:364–368

    Article  PubMed  Google Scholar 

  25. Momm F, Schubert E, Henne K et al (2010) Stereotactic fractionated radiotherapy for Klatskin tumours. Radiother Oncol 95:99–102

    Article  PubMed  Google Scholar 

  26. Murphy JD, Christman-Skieller C, Kim J et al (2010) Adosimetric model of duodenal toxicity after stereotactic body radiotherapy for pancreatic cancer. Int J Radiat Oncol Biol Phys 78:1420–1426

    Article  PubMed  Google Scholar 

  27. Oshiro Y, Aruga T, Tsuboi K et al (2010) Stereotactic body radiotherapy for lung tumors at the pulmonary hilum. Strahlenther Onkol 186:274–279

    Article  PubMed  Google Scholar 

  28. Polistina F, Constantin G, Casamassima F et al (2010) Unresectable locally advanced pancreatic cancer: a multimodal treatment using neoadjuvant chemoradiotherapy (gemcitabine plus stereotactic radiosurgery) and subsequent surgical exploration. Ann Surg Oncol 17:2092–2101

    Article  PubMed  Google Scholar 

  29. Rwigema JC, Parikh SD, Heron DE et al (2011) Stereotactic body radiotherapy in the treatment of advanced adenocarcinoma of the pancreas. Am J Clin Oncol 34:63–69

    Article  PubMed  CAS  Google Scholar 

  30. Schellenberg D, Quon A, Minn AY et al (2010) 18Fluorodeoxyglucose PET is prognostic of progression-free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 77:1420–1425

    Article  PubMed  Google Scholar 

  31. Seo YS, Kim MS, Yoo S et al (2009) Stereotactic body radiation therapy boost in locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 75:1456–1461

    Article  PubMed  Google Scholar 

  32. Timmerman RD, Kavanagh BD, Cho LC et al (2007) Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol 25:947–952

    Article  PubMed  Google Scholar 

  33. Timmerman R, Papiez L, Suntharalingam M (2003) Extracranial stereotactic radiation delivery: expansion of technology beyond the brain. Technol Cancer Res Treat 2:153–160

    PubMed  Google Scholar 

  34. Tse RV, Hawkins M, Lockwood G et al (2008) Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol 26:657–664

    Article  PubMed  Google Scholar 

  35. Voigtmann K, Köllner V, Einsle F et al (2010) Emotional state of patients in radiotherapy and how they deal with their disorder. Strahlenther Onkol 186:229–235

    Article  PubMed  Google Scholar 

  36. Wulf J, Hädinger U, Oppitz U et al (2001) Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol 177:645–655

    Article  PubMed  CAS  Google Scholar 

  37. Wulf J, Hädinger U, Oppitz U et al (2000) Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother Oncol 57:225–236

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Momm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamboglou, C., Meßmer, MB., Becker, G. et al. Stereotactic radiotherapy in the liver hilum. Strahlenther Onkol 188, 35–41 (2012). https://doi.org/10.1007/s00066-011-0002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-0002-2

Keywords

Schlüsselwörter

Navigation