Skip to main content

Advertisement

Log in

The Use of FDG-PET to Target Tumors by Radiotherapy

Der Einsatz der FDG-PET bei der Behandlung von Tumoren mittels Strahlentherapie

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Fluorodeoxyglucose positron emission tomography (FDG-PET) plays an increasingly important role in radiotherapy, beyond staging and selection of patients. Especially for non-small cell lung cancer, FDG-PET has, in the majority of the patients, led to the safe decrease of radiotherapy volumes, enabling radiation dose escalation and, experimentally, redistribution of radiation doses within the tumor. In limited-disease small cell lung cancer, the role of FDG-PET is emerging. For primary brain tumors, PET based on amino acid tracers is currently the best choice, including high-grade glioma. This is especially true for low-grade gliomas, where most data are available for the use of 11C-MET (methionine) in radiation treatment planning. For esophageal cancer, the main advantage of FDG-PET is the detection of otherwise unrecognized lymph node metastases. In Hodgkin’s disease, FDG-PET is essential for involved-node irradiation and leads to decreased irradiation volumes while also decreasing geographic miss. FDG-PET’s major role in the treatment of cervical cancer with radiation lies in the detection of para-aortic nodes that can be encompassed in radiation fields. Besides for staging purposes, FDG-PET is not recommended for routine radiotherapy delineation purposes. It should be emphasized that using PET is only safe when adhering to strictly standardized protocols.

Zusammenfassung

Die Fluordesoxyglucose-Positronenemissionstomographie (FDG-PET) spielt eine zunehmende Bedeutung in der Strahlentherapie, neben der bereits etablierten Bedeutung für Tumorstaging und Patientenselektion. Insbesondere bei nichtkleinzelligen Lungenkarzinomen führt der Einsatz der FDG-PET in der Mehrzahl der Fälle zu einer unbedenklichen Abnahme des Strahlenvolumens, wodurch Dosiseskalationen und auf experimenteller Ebene selbst Dosisumverteilungen der Strahlendosis im Zielvolumen möglich werden. Bei kleinzelligen Lungenkarzinomen nimmt die Bedeutung der FDG-PET ebenfalls zu. Bei primären Hirntumoren stellt die Aminosäure-PET derzeit die beste Wahl dar, auch bei den hochgradigen Gliomen. Für die niedriggradigen Gliome favorisieren die meisten Daten den Einsatz von 11C-MET (Methionin) in der Strahlentherapieplanung. Beim Ösophaguskarzinom liegt der wesentliche Vorteil der FDG-PET in der Detektion von unerkannten Lymphknotenmetastasen. Beim Morbus Hodgkin ist die FDG-PET essentiell für die „involved-field“-Bestrahlung und führt zu einem reduzierten Strahlenvolumen bei gleichzeitig vermindertem Risko der geographischen Fehlbehandlung. Die bedeutendste Rolle der FDG-PET bei der Behandlung des Zervixkarzinoms liegt in der Detektion von paraaortalen Lymphknoten, die in das Bestrahlungsgebiet mit aufgenommen werden. Zusammenfassend wird die FDG-PET neben dem Einsatz beim primären Tumorstaging derzeit nicht für den Routineeinsatz bei der Einzeichnung des Zielvolumens in der Strahlentherapie empfohlen. Der Einsatz der FDG-PET sollte nur nach streng standardisierten Protokollen erfolgen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 1998;206:755–60.

    CAS  PubMed  Google Scholar 

  2. Aerts HJ, Bosmans G, van Baardwijk AA, et al. Stability of (18)F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys 2008;71:1402–7.

    CAS  PubMed  Google Scholar 

  3. Aerts HJ, van Baardwijk AA, Petit SF, et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)fluorodeoxyglucose-PET-CT scan. Radiother Oncol 2009;91:386–92.

    Article  PubMed  Google Scholar 

  4. Anderson C, Koshy M, Staley C, et al. PET-CT fusion in radiation management of patients with anorectal tumors. Int J Radiat Oncol Biol Phys 2007;69:155–62.

    PubMed  Google Scholar 

  5. Astner ST, Dobrei-Ciuchendea M, Essler M, et al. Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 2008;72:1161–7.

    PubMed  Google Scholar 

  6. Belderbos JS, Heemsbergen WD, De Jaeger K, et al. Final results of a phase I/II dose escalation trial in non-small-cell lung cancer using three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:126–34.

    PubMed  Google Scholar 

  7. Belhocine T, Thille A, Fridman V, et al. Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol 2002;87:90–7.

    Article  PubMed  Google Scholar 

  8. Bergström M, Muhr C, Lundberg PO, Långström B. PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 1991;32:610–5.

    PubMed  Google Scholar 

  9. Boellaard R, Oyen WJ, Hoekstra CJ, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 2008;35:2320–33.

    Article  PubMed  Google Scholar 

  10. Capirci C, Rubello D, Pasini F, et al. The role of dual-time combined 18-fluorodeoxyglucose positron emission tomography and computed tomography in the staging and restaging workup of locally advanced rectal cancer, treated with preoperative chemoradiation therapy and radical surgery. Int J Radiat Oncol Biol Phys 2009;74:1461–9.

    PubMed  Google Scholar 

  11. Choi HJ, Roh JW, Seo SS, et al. Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 2006;106:914–22.

    Article  PubMed  Google Scholar 

  12. Ciernik IF, Dizendorf E, Baumert BG, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.

    PubMed  Google Scholar 

  13. Daisne JF, Duprez T, Weynand B, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.

    Article  PubMed  Google Scholar 

  14. De Ruysscher D, Wanders S, Minken A, et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: results of a prospective study. Radiother Oncol 2005;77:5–10.

    Article  PubMed  Google Scholar 

  15. De Ruysscher D, Wanders S, van Haren E, et al. Selective mediastinal node irradiation on basis of the FDG-PET scan in patients with non-small cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 2005;62:988–94.

    PubMed  Google Scholar 

  16. Divgi C. Imaging: staging and evaluation of lymphoma using nuclear medicine. Semin Oncol 2005;32:Suppl 1:S11–8.

    Article  PubMed  Google Scholar 

  17. Eich HT, Müller RP, Engenhart-Cabillic R, et al., German Hodgkin Study Group. Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG). Strahlenther Onkol 2008;184:406–10.

    Article  PubMed  Google Scholar 

  18. Flamen P, Lerut A, Van Cutsem E, et al. Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol 2000;18:3202–10.

    CAS  PubMed  Google Scholar 

  19. Flamen P, Stroobants S, Van Cutsem E, et al. Additional value of whole-body positron emission tomography with fluorine-18-2-fluoro-deoxy-D-glucose in recurrent colorectal cancer. J Clin Oncol 1999;17:894–901.

    CAS  PubMed  Google Scholar 

  20. Floeth FW, Sabel M, Stoffels G, et al. Prognostic value of O-(2-1-F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 2007;48:519–27.

    Article  CAS  PubMed  Google Scholar 

  21. Girinsky T, Ghalibafian M, Bonniaud G, et al. Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol 2007;85:178–86.

    Article  PubMed  Google Scholar 

  22. Girinsky T, van der Maazen R, Specht L, et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol 2006;79:270–7.

    Article  PubMed  Google Scholar 

  23. Grgic A, Nestle U, Schaefer-Schuler A, et al. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning — an intraindividual comparison. Int J Radiat Oncol Biol Phys 2009;73:103–11.

    PubMed  Google Scholar 

  24. Gross MW, Weber WA, Feldmann HJ, et al. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 1998;41:989–95.

    CAS  PubMed  Google Scholar 

  25. Grosu AL, Piert M, Molls M. Experience of PET for target localisation in radiation oncology. Br J Radiol Suppl 2005;28:8–32.

    Google Scholar 

  26. Grosu AL, Weber WA, Astner ST, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:339–44.

    CAS  PubMed  Google Scholar 

  27. Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005;63:511–9.

    CAS  PubMed  Google Scholar 

  28. Heeren PA, Jager PL, Bongaerts F, et al. Detection of distant metastases in esophageal cancer with (18)F-FDG PET. J Nucl Med 2004;45:980–7.

    PubMed  Google Scholar 

  29. Hicks RJ, Kalff V, MacManus MP, et al. 18F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 2001;42:1596–604.

    CAS  PubMed  Google Scholar 

  30. Jacobs AH, Thomas A, Kracht LW, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 2005;46:1948–58.

    CAS  PubMed  Google Scholar 

  31. Janssen MH, Aerts HJ, Öllers MC, et al. Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients. Int J Radiat Oncol Biol Phys 2009;73:456–65.

    PubMed  Google Scholar 

  32. Janssen MH, Ollers MC, Riedl RG, et al. Accurate prediction of pathological rectal tumor response after two weeks of preoperative radiochemotherapy using (18)F-fluorodeoxyglucose-positron emission tomography-computed tomography imaging. Int J Radiat Oncol Biol Phys 2010;77:392–9.

    PubMed  Google Scholar 

  33. Janssen MH, Ollers MC, Stiphout RG, et al. Blood glucose level normalization and accurate timing improves the accuracy of PET-based treatment response predictions in rectal cancer. Radiother Oncol 2010;95:203–8.

    Article  CAS  PubMed  Google Scholar 

  34. Janssen MH, Ollers MC, van Stiphout RG, et al. Evaluation of early metabolic responses in rectal cancer during combined radiochemotherapy or radiotherapy alone: sequential FDG-PET-CT findings. Radiother Oncol 2010;94:151–5.

    Article  PubMed  Google Scholar 

  35. Johansen J, Buus S, Loft A, et al. Prospective study of 18FDG-PET in the detection and management of patients with lymph node metastases to the neck from an unknown primary tumor. Results from the DAHANCA-13 study. Head Neck 2008;30:471–8.

    Article  PubMed  Google Scholar 

  36. Kantorova I, Lipska L, Belohlavek O, et al. Routine 18F-FDG PET preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med 2003;44:1784–8.

    PubMed  Google Scholar 

  37. Kaschten B, Stevenaert A, Sadzot B, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998;39:778–85.

    CAS  PubMed  Google Scholar 

  38. Kobe C, Dietlein M, Franklin J, et al. Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma. Blood 2008;112:3989–94.

    Article  CAS  PubMed  Google Scholar 

  39. Konski A, Doss M, Milestone B, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;61:1123–8.

    PubMed  Google Scholar 

  40. Leong T, Everitt C, Yuen K, et al. A prospective study to evaluate the impact of FDG-PET on CT based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol 2006;78:254–61.

    Article  PubMed  Google Scholar 

  41. Levivier M, Massager N, Wikler D, et al. Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med 2004;45:1146–5.

    PubMed  Google Scholar 

  42. Levivier M, Massager N, Wikler D, Goldman S. Modern multimodal neuroimaging for radiosurgery: the example of PET scan integration. Acta Neurochir (Wien) 2004;91:1–7.

    CAS  Google Scholar 

  43. Loft A, Berthelsen AK, Roed H, et al. The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Gynecol Oncol 2007;106:29–34.

    Article  PubMed  Google Scholar 

  44. MacManus MP, Hicks RJ, Matthews JP, et al. High rate of detection of unsuspected distant metastases by PET in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 2001;50:287–93.

    Article  CAS  PubMed  Google Scholar 

  45. Mah K, Caldwell CB, Ung YC, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.

    PubMed  Google Scholar 

  46. Milker-Zabel S, Zabel-du Bois A, Henze M, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 2006;65:222–7.

    PubMed  Google Scholar 

  47. Miwa K, Shinoda J, Yano H, et al. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry 2004;75:1457–62.

    Article  CAS  PubMed  Google Scholar 

  48. Moureau-Zabotto L, Touboul E, Lerouge D, et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;63:340–5.

    PubMed  Google Scholar 

  49. Nehmeh SA, Erdi YE, Rosenzweig KE, et al. Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J Nucl Med 2003;44:1644–8.

    PubMed  Google Scholar 

  50. Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209–25.

    Article  CAS  PubMed  Google Scholar 

  51. Nestle U, Schaefer-Schuler A, Kremp S, et al. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34:453–62.

    Article  PubMed  Google Scholar 

  52. Nowak B, Di Martino E, Jänicke S, et al. Diagnostic evaluation of malignant head and neck cancer by F-18-FDG PET compared to CT/MRI. Nuklearmedizin 1999;38:312–8.

    CAS  PubMed  Google Scholar 

  53. Nuutinen J, Sonninen P, Lehikoinen P, et al. Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 2000;48:43–52.

    Article  CAS  PubMed  Google Scholar 

  54. Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma: evaluation with methionine PET. Radiology 1993;186:45–53.

    CAS  PubMed  Google Scholar 

  55. Paskeviciute B, Bölling T, Brinkmann M, et al. Impact of (18)F-FDG-PET/CT on staging and irradiation of patients with locally advanced rectal cancer. Strahlenther Onkol 2009;185:260–5.

    Article  PubMed  Google Scholar 

  56. Paulino AC, Koshy M, Howell R, et al. Comparison of CT and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;61:1385–92.

    PubMed  Google Scholar 

  57. Paulsen F, Scheiderbauer J, Eschmann SM, et al. First experiences of radiation treatment planning with PET/CT. Strahlenther Onkol 2006;182:369–75.

    Article  PubMed  Google Scholar 

  58. Räsänen JV, Sihvo EI, Knuuti MJ, et al. Prospective analysis of accuracy of PET, CT and EUS in staging of adenocarcinoma of the esophagus and gastroesophageal cancer. Ann Surg Oncol 2003;10:954–60.

    Article  PubMed  Google Scholar 

  59. Rickhey M, Koelbl O, Eilles C, Bogner L. A biologically adapted dose-escalation approach, demonstrated for 18F-FET-PET in brain tumors. Strahlenther Onkol 2008;184:536–42.

    Article  PubMed  Google Scholar 

  60. Rutten I, Cabay JE, Withofs N, et al. PET/CT of skull base meningiomas using 2-18F-fluoro-L-tyrosine: initial report. J Nucl Med 2007;48:720–5.

    Article  CAS  PubMed  Google Scholar 

  61. Schaefer A, Kremp S, Hellwig D, et al. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008;35:1989–99.

    Article  PubMed  Google Scholar 

  62. Schinagl DA, Hoffmann AL, Vogel WV, et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol 2009;91:95–100.

    Article  PubMed  Google Scholar 

  63. Schot BW, Zijlstra JM, Sluiter WJ, et al. Early FDG-PET assessment in combination with clinical risk scores determines prognosis in recurring lymphoma. Blood 2007;109:486–91.

    Article  CAS  PubMed  Google Scholar 

  64. Senan S, De Ruysscher D, Giraud P, et al. Radiotherapy Group of European Organization for Research and Treatment of Cancer. Literature-based recommendations for treatment planning and execution for high-precision radiotherapy in lung cancer. Radiother Oncol 2004;71:139–46.

    Article  PubMed  Google Scholar 

  65. Solberg TD, Agazaryan N, Goss BW, et al. A feasibility study of 18F-fluorodeoxyglucose positron emission tomography targeting and simultaneous integrated boost for intensity-modulated radiosurgery and radiotherapy. J Neurosurg 2004;101:Suppl 3:381–9.

    PubMed  Google Scholar 

  66. Steenbakkers RJ, Duppen JC, Fitton I, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 2006;64:435–48.

    PubMed  Google Scholar 

  67. Stroom J, Blaauwgeers H, van Baardwijk A, et al. Feasibility of pathologycorrelated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 2007;69:267–275.

    PubMed  Google Scholar 

  68. Sura S, Greco C, Gelblum D, et al. (18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 2008;70:1397–402.

    PubMed  Google Scholar 

  69. Tralins KS, Douglas JG, Stelzer KJ, et al. Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. Nucl Med 2002;43:1667–73.

    Google Scholar 

  70. van Baardwijk A, Bosmans G, Boersma L, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68:771–8.

    PubMed  Google Scholar 

  71. van Baardwijk A, Bosmans G, Boersma L, et al. Individualized radical radiotherapy of non-small-cell lung cancer based on normal tissue dose constraints: a feasibility study. Int J Radiat Oncol Biol Phys 2008;71:1394–401.

    PubMed  Google Scholar 

  72. van Der Wel A, Nijsten S, Hochstenbag M, et al. Increased therapeutic ratio by 18FDG-PET-CT planning in patients with clinical CT stage N2/N3 M0 non-small cell lung cancer (NSCLC): a modelling study. Int J Radiat Oncol Biol Phys 2005;61:648–54.

    Google Scholar 

  73. Van Laere K, Ceyssens S, Van Calenbergh F, et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2005;32:39–51.

    Article  CAS  PubMed  Google Scholar 

  74. van Loon J, De Ruysscher D, Wanders R, et al. Selective nodal irradiation on basis of 18FDG-PET scans in limited disease small cell lung cancer: a phase II trial. Int J Radiat Oncol Biol Phys 2010;77:329–36.

    PubMed  Google Scholar 

  75. van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 2002;359:1388–93.

    Article  PubMed  Google Scholar 

  76. van Westreenen HL, Westerterp M, Sloof GW, et al. Limited additional value of positron emission tomography in staging oesophageal cancer. Br J Surg 2007;94:1515–20.

    Article  PubMed  Google Scholar 

  77. Vliegen RF, Beets-Tan RG, Vanhauten B, et al. Can an FDG-PET/CT predict tumor clearance of the mesorectal fascia after preoperative chemoradiation of locally advanced rectal cancer? Strahlenther Onkol 2008;184:457–64.

    Article  PubMed  Google Scholar 

  78. Vrieze O, Haustermans K, De Wever W, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73:269–75.

    Article  PubMed  Google Scholar 

  79. Weber DC, Zilli T, Buchegger F, et al. [(18)]fluroroethyltyrosine-positron emission tomography-guided radiotherapy for high grade glioma. Radiat Oncol 2008;3:44.

    Article  PubMed  Google Scholar 

  80. Wright JD, Dehdashti F, Herzog TJ, et al. Preoperative lymph node staging of early-stage cervical carcinoma by [18F]-fluoro-2-deoxy-D-glucose-positron emission tomography. Cancer 2005;104:2484–91.

    Article  PubMed  Google Scholar 

  81. Yahalom J. Transformation in the use of radiation therapy of Hodgkin lymphoma: new concepts and indications lead to modern field design and are assisted by PET imaging and intensity modulated radiation therapy (IMRT). Eur J Haematol 2005;66:Suppl:90–7.

    Article  Google Scholar 

  82. Zijlstra JM, Lindauer-van der Werf G, Hoekstra OS, et al. 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica 2006;91:522–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Lammering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammering, G., De Ruysscher, D., van Baardwijk, A. et al. The Use of FDG-PET to Target Tumors by Radiotherapy. Strahlenther Onkol 186, 471–481 (2010). https://doi.org/10.1007/s00066-010-2150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2150-1

Key Words

Schlüsselwörter

Navigation