Skip to main content

Advertisement

Log in

Second Malignancies in High‑Dose Areas of Previous Tumor Radiotherapy

Zweitmalignome in Hochdosisbereich vorangegangener Strahlentherapie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose:

To characterize second tumors that developed in or near the high-dose areas of a previous radiotherapy, regarding their frequency, entities, latency, and dose dependence.

Patients and Methods:

9,995/15,449 tumor patients of the Radiation Oncology Department in Ulm, Germany, treated between 1981 and 2003, survived at least 1 year after radiotherapy. By long-term follow-up and review of treatment documentation, 100 of them were identified who developed an independent second cancer in or near the irradiated first tumor site.

Results:

Major primary malignancies were breast cancer (27%), lymphoma (24%), and pelvic gynecologic tumors (17%). Main second tumors were carcinomas of the upper (18%) and lower (12%) gastrointestinal tract, head and neck tumors (10%), lymphoma (10%), breast cancer (9%), sarcoma (9%), and lung cancer (8%). Overall median second tumor latency was 7.4 years (1–42 years). For colorectal cancer it was 3.5 and for leukemia 4.3 years, but for sarcoma 11.7 and for breast cancer 17.1 years. The relatively frequent second tumors of the upper gastrointestinal tract were associated with median radiation doses of 24 Gy. By contrast, second colorectal cancer and sarcoma developed after median doses of 50 Gy.

Conclusion:

The 5- and 15-year probability to develop a histopathologically independent second tumor in or near the irradiated first tumor site, i.e., after intermediate or high radiation doses, was 0.5% and 2.2%, respectively. To identify potentially radiogenic second malignancies, a follow-up far beyond 5 years is mandatory. The incidence and potential dose-response relationship intermediate will be analyzed by a case-case and a case-control study of the Ulm data.

Zusammenfassung

Ziel:

Zweitmalignome, die sich im oder nahe am Hochdosisbehandlungsvolumen einer vorangegangenen Strahlentherapie entwickelten, sollten hinsichtlich ihrer Häufigkeit, Entitäten, Latenz und Dosiskorrelation charakterisiert werden.

Patienten und Methodik:

9 995/15 449 Patienten, die zwischen 1981 und 2003 in der Klinik für Strahlentherapie der Universität Ulm behandelt wurden, überlebten mindestens 1 Jahr. Unter diesen Patienten wurden durch Langzeit-Follow-up und Überprüfung der Behandlungsdokumentation 100 Fälle identifiziert, bei denen sich im oder nahe am Ersttumor-Bestrahlungsvolumen ein unabhängiger Zweittumor entwickelte.

Ergebnisse:

Die dominanten Erstmalignome waren Mammakarzinome (27%), Lymphome (24%) und gynäkologische Beckentumoren (17%). Häufiger beobachtete Zweittumoren waren Karzinome des oberen (18%) und unteren (12%) Verdauungstrakts, des Kopf-Hals-Bereichs (10%), Lymphome (10%), Mammakarzinome (9%), Sarkome (9%) und Lungentumoren (8%). Die Latenz der Zweittumoren lag insgesamt bei median 7,4 Jahren (1–42 Jahre), für kolorektale Karzinome bei 3,5 und für Leukämien bei 4,3 Jahren, für Sarkome dagegen bei 11,7 und für Mammakarzinome bei 17,1 Jahren. Die relativ häufigen Zweittumoren des oberen Verdauungstrakts entstanden in Arealen, die bei der Ersttherapie median 24 Gy erhielten, kolorektale Karzinom und Sarkome dagegen entwickelten sich nach Mediandosen von 50 Gy.

Schlussfolgerung:

Die 5- bzw. 15-Jahres-Wahrscheinlichkeit, ein Zweitmalignom im oder nahe am ursprünglichen Behandlungsvolumen, also nach mittleren bis hohen Strahlendosen, zu entwickeln, lag bei 0,5% bzw. 2,2%. Um potentiell radiogene Zweittumoren zu erkennen, sind Nachbeobachtungszeiten von weit über 5 Jahren erforderlich. Inzidenzen und mögliche Dosis-Wirkungs-Beziehungen sollen im Rahmen von Fall-Fall- und Fall-Kontroll-Studien an den Ulmer Daten untersucht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allan JM, Rabkin CS. Genetic susceptibility to iatrogenic malignancy. Pharmacogenomics 2005;6:615–28.

    Article  PubMed  CAS  Google Scholar 

  2. Baxter NN, Tepper JE, Durham SB, et al. Increased risk of rectal cancer after prostate radiation: a population-based study. Gastroenterology 2005;128:819–24.

    Article  PubMed  Google Scholar 

  3. Behringer K, Josting A, Schiller P, et al. Solid tumors in patients treated for Hodgkin’s disease: a report from the German Hodgkin Lymphoma Study Group. Ann Oncol 2004;15:1079–85.

    Article  PubMed  CAS  Google Scholar 

  4. Brenner DJ, Curtis RE, Hall EJ, et al. Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 2000;88:398–406.

    Article  PubMed  CAS  Google Scholar 

  5. Darby SC, McGale P, Taylor CW, et al. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 2005;6:557–65.

    Article  PubMed  Google Scholar 

  6. Dasu A, Toma-Dasu I, Olofsson J, et al. The use of risk estimation models for the induction of secondary cancers following radiotherapy. Acta Oncol 2005;44:339–47.

    Article  PubMed  Google Scholar 

  7. Deutsch M, Land SR, Begovic M, et al. The incidence of lung carcinoma after surgery for breast carcinoma with and without postoperative radiotherapy. Results of National Surgical Adjuvant Breast and Bowel Project (NSABP) clinical trials B-04 and B-06. Cancer 2003;98:1362–8.

    Article  PubMed  Google Scholar 

  8. Dörr W, Herrmann T. Second primary tumors after radiotherapy for malignancies. Treatment-related parameters. Strahlenther Onkol 2002;178:357–62.

    Article  PubMed  Google Scholar 

  9. Dörr W, Herrmann T. Second tumors after oncologic treatment. Strahlenther Onkol 2008;184:67–72.

    Article  PubMed  Google Scholar 

  10. Gold DG, Neglia JP, Dusenbery KE. Second neoplasms after megavoltage radiation for pediatric tumors. Cancer 2003;97:2588–96.

    Article  PubMed  Google Scholar 

  11. Guibout C, Adjadj E, Rubino C, et al. Malignant breast tumors after radiotherapy for a first cancer during childhood. J Clin Oncol 2005;23:197–204.

    Article  PubMed  Google Scholar 

  12. Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006;65:1–7.

    Article  PubMed  Google Scholar 

  13. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003;56:83–8.

    Article  PubMed  Google Scholar 

  14. Huang J, Walker R, Groome PG, et al. Risk of thyroid carcinoma in a female population after radiotherapy for breast carcinoma. Cancer 2001;92:1411–8.

    Article  PubMed  CAS  Google Scholar 

  15. Josting A, Wiedenmann S, Franklin J, et al. Secondary myeloid leukemia and myelodysplastic syndromes in patients treated for Hodgkin’s disease: a report from the German Hodgkin’s Lymphoma Study Group. J Clin Oncol 2003;21:3440–6.

    Article  PubMed  Google Scholar 

  16. Kumar S, Shah JP, Bryant CS, et al. Second neoplasms in survivors of endometrial cancer: impact of radiation therapy. Gynecol Oncol 2009;113:233–9.

    Article  PubMed  Google Scholar 

  17. Neugut AI, Ahsan H, Robinson E, et al. Bladder carcinoma and other second malignancies after radiotherapy for prostate carcinoma. Cancer 1997;79:1600–4.

    Article  PubMed  CAS  Google Scholar 

  18. Ng AK, Bernardo MV, Weller E, et al. Second malignancy after Hodgkin disease treated with radiation therapy with or without chemotherapy: long-term risks and risk factors. Blood 2002;100:1989–96.

    Article  PubMed  CAS  Google Scholar 

  19. Ota T, Takeshima N, Tabata T, et al. Treatment of squamous cell carcinoma of the uterine cervix with radiation therapy alone: long-term survival, late complications, and incidence of second cancers. Br J Cancer 2007;97:1058–62.

    Article  PubMed  CAS  Google Scholar 

  20. Preston DL, Shimizu Y, Pierce DA, et al. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat Res 2003;160:381–407.

    Article  PubMed  CAS  Google Scholar 

  21. Roth J, Martinez AE. [Determination of organ doses and effective doses in radiooncology.] Strahlenther Onkol 2007;183:392–7.

    Article  PubMed  Google Scholar 

  22. Schneider U, Lomax A, Pemler P, et al. The impact of IMRT and proton radiotherapy on secondary cancer incidence. Strahlenther Onkol 2006;182:647–52.

    Article  PubMed  Google Scholar 

  23. Suit H, Goldberg S, Niemierko A, et al. Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiat Res 2007;167:12–42.

    Article  PubMed  CAS  Google Scholar 

  24. Svahn-Tapper G, Garwicz S, Anderson H, et al. Radiation dose and relapse are predictors for development of second malignant solid tumors after cancer in childhood and adolescence: a population-based case-control study in the five Nordic countries. Acta Oncol 2006;45:438–48.

    Article  PubMed  Google Scholar 

  25. Swerdlow AJ, Barber JA, Hudson GV, et al. Risk of second malignancy after Hodgkin’s disease in a collaborative British cohort: the relation to age at treatment. J Clin Oncol 2000;18:498–509.

    PubMed  CAS  Google Scholar 

  26. Travis LB, Fossa SD, Schonfeld SJ, et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst 2005;97:1354–65.

    Article  PubMed  Google Scholar 

  27. Travis LB, Hill D, Dores GM, et al. Cumulative absolute breast cancer risk for young women treated for Hodgkin lymphoma. J Natl Cancer Inst 2005;97:1428–37.

    Article  PubMed  Google Scholar 

  28. Travis LB, Rabkin CS, Brown LM, et al. Cancer survivorship — genetic susceptibility and second primary cancers: research strategies and recommendations. J Natl Cancer Inst 2006;98:15–25.

    Article  PubMed  Google Scholar 

  29. Trott KR, Kamprad F. Estimation of cancer risks from radiotherapy of benign diseases. Strahlenther Onkol 2006;182:431–6.

    Article  PubMed  Google Scholar 

  30. Verellen D, Vanhavere F. Risk assessment of radiation-induced malignancies based on whole-body equivalent dose estimates for IMRT treatment in the head and neck region. Radiother Oncol 1999;53:199–203.

    Article  PubMed  CAS  Google Scholar 

  31. Vorwerk H, Wagner D, Christiansen H, et al. An easy irradiation technique (partial half-beam) to reduce renal dose in radiotherapy of cervical cancer including paraaortic lymph nodes. Strahlenther Onkol 2008;184:473–7.

    Article  PubMed  Google Scholar 

  32. Wiezorek T, Schwahofer A, Schubert K. The influence of different IMRT techniques on the peripheral dose. A comparison between sMLM-IMRT and helical tomotherapy. Strahlenther Onkol 2009;185:696–702.

    Article  PubMed  Google Scholar 

  33. Wiezorek T, Voigt A, Metzger N, et al. Experimental determination of peripheral doses for different IMRT techniques delivered by a Siemens linear accelerator. Strahlenther Onkol 2008;184:73–9.

    Article  PubMed  Google Scholar 

  34. Zablotska LB, Chak A, Das A, et al. Increased risk of squamous cell esophageal cancer after adjuvant radiation therapy for primary breast cancer. Am J Epidemiol 2005;161:330–7.

    Article  PubMed  Google Scholar 

  35. Zablotska LB, Neugut AI. Lung carcinoma after radiation therapy in women treated with lumpectomy or mastectomy for primary breast carcinoma. Cancer 2003;97:1404–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Bartkowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welte, B., Suhr, P., Bottke, D. et al. Second Malignancies in High‑Dose Areas of Previous Tumor Radiotherapy. Strahlenther Onkol 186, 174–179 (2010). https://doi.org/10.1007/s00066-010-2050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2050-4

Key Words

Schlüsselwörter

Navigation