Skip to main content

Advertisement

Log in

Normal-Tissue Radioprotection by Overexpression of the Copper-Zinc and Manganese Superoxide Dismutase Genes

Radioprotektion des Normalgewebes durch Überexpression der Kupfer-Zink- und Mangan-Superoxiddismutase-Gene

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background and Purpose:

Protection of normal tissue against radiation-induced damage may increase the therapeutic ratio of radiotherapy. A promising strategy for testing this approach is gene therapy-mediated overexpression of the copper-zinc (CuZnSOD) or manganese superoxide dismutase (MnSOD) using recombinant adeno-associated viral (rAAV2) vectors. The purpose of this study was to test the modulating effects of the SOD genes on human primary lung fibroblasts (HPLF) after irradiation.

Material and Methods:

HPLF were transduced with rAAV2 vectors containing cDNA for the CuZnSOD, MnSOD or a control gene. The cells were irradiated (1–6 Gy), and gene transfer efficiency, apoptosis, protein expression/activity, and radiosensitivity measured by the colony-forming assay determined.

Results:

After transduction, 90.0% ± 6.4% of the cells expressed the transgene. A significant fivefold overexpression of both SOD was confirmed by an SOD activity assay (control: 21.1 ± 12.6, CuZnSOD: 95.1 ± 17.1, MnSOD: 108.5 ± 36.0 U SOD/mg protein) and immunohistochemistry. CuZnSOD and MnSOD overexpression resulted in a significant radioprotection of HPLF compared to controls (surviving fraction [SF] ratio SOD/control > 1): CuZnSOD: 1.18-fold (95% confidence interval [CI]: 1.06–1.32; p = 0.005), MnSOD: 1.23-fold (95% CI: 1.07–1.43; p = 0.01).

Conclusion:

Overexpression of CuZnSOD and MnSOD in HPLF mediated an increase in clonogenic survival after irradiation compared to controls. In previous works, a lack of radioprotection in SOD-overexpressing tumor cells was observed. Therefore, the present results suggest that rAAV2 vectors are promising tools for the delivery of radioprotective genes in normal tissue.

Hintergrund und Ziel:

Der Ansatz, Normalgewebszellen gegen bestrahlungsinduzierte Schäden zu schützen, kann möglicherweise die therapeutische Breite strahlentherapeutischer Ansätze erhöhen. Ein potentieller Ansatz wäre die gentherapeutische Überexpression der Kupfer-Zink-(CuZnSOD) oder Mangan-Superoxiddismutase (MnSOD) mit rekombinanten Adeno-assoziierten viralen (rAAV2) Vektoren. Das Ziel dieser Studie war die Bestimmung der bestrahlungsmodulierenden Effekte der SOD-Gene auf humane primäre Lungenfibroblasten (HPLF).

Material und Methodik:

HPLF wurden mit rAAV2-Vektoren transduziert, die die cDNA für CuZnSOD, MnSOD oder ein Kontrollgen enthielten. Die Zellen wurden mit 1–6 Gy bestrahlt und deren Gentransfereffizienz, Apoptoserate, Proteinexpression/-aktivität und Strahlensensitivität mit einem Koloniebildungsassay bestimmt.

Ergebnisse:

Nach Transduktion exprimierten 90,0% ± 6,4% der Zellen das entsprechende Transgen. Für beide SOD konnte mittels Immunhistochemie sowie SOD-Aktivitätsassay eine signifikante Überexpression (fünffach; Kontrolle: 21,1 ± 12,6, CuZnSOD: 95,1 ± 17,1, MnSOD: 108,5 ± 36,0 U SOD/mg Gesamtprotein) gezeigt werden. Diese Überexpression führte zu einer signifikanten Radioprotektion der HPLF im Vergleich zu den Kontrollen (Überlebensfraktion-[SF-]Quotient SOD/Kontrolle > 1): CuZnSOD: 1,18-fach (95%-Konfidenzintervall [CI]: 1,06–1,32; p = 0,005), MnSOD: 1,23-fach (95%-CI: 1,07–1,43; p = 0,01).

Schlussfolgerung:

Im Vergleich zu den Kontrollen führte die Überexpression von CuZnSOD oder MnSOD in HPLF zu einem erhöhten klonogenen Überleben nach Bestrahlung. Da in vorherigen Arbeiten eine mangelnde Radioprotektion nach Überexpression der SOD-Gene in Tumorzellen beobachtet werden konnte, sind rAAV2-Vektoren erfolgversprechend für die Übertragung von radioprotektiven Genen in Normalgewebszellen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolling T, Konemann S, Ernst I, et al. Late effects of thoracic irradiation in children. Strahlenther Onkol 2008;184:289–95.

    Article  PubMed  Google Scholar 

  2. Delanian S, Martin M, Bravard A, et al. Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiother Oncol 2001;58:325–31.

    Article  PubMed  CAS  Google Scholar 

  3. Dorr W, Herrmann T. Efficacy of Wobe-Mugos E for reduction of oral mucositis after radiotherapy. Results of a prospective, randomized, placebo-controlled, triple-blind phase III multicenter study. Strahlenther Onkol 2007;183:121–7.

    Article  PubMed  Google Scholar 

  4. Epperly M, Bray J, Kraeger S, et al. Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy. Gene Ther 1998;5:196–208.

    Article  PubMed  CAS  Google Scholar 

  5. Epperly MW, Bray JA, Krager S, et al. Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int J Radiat Oncol Biol Phys 1999;43:169–81.

    PubMed  CAS  Google Scholar 

  6. Epperly MW, Carpenter M, Agarwal A, et al. Intraoral manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo 2004;18:401–10.

    PubMed  CAS  Google Scholar 

  7. Epperly MW, Defilippi S, Sikora C, et al. Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 2000;7:1011–8.

    Article  PubMed  CAS  Google Scholar 

  8. Epperly MW, Epperly LD, Niu Y, et al. Overexpression of the MnSOD transgene product protects cryopreserved bone marrow hematopoietic progenitor cells from ionizing radiation. Radiat Res 2007;168:560–6.

    Article  PubMed  CAS  Google Scholar 

  9. Epperly MW, Guo HL, Jefferson M, et al. Cell phenotype specific kinetics of expression of intratracheally injected manganese superoxide dismutase-plasmid/liposomes (MnSOD-PL) during lung radioprotective gene therapy. Gene Ther 2003;10:163–71.

    Article  PubMed  CAS  Google Scholar 

  10. Gehrisch A, Dorr W. Effects of systemic or topical administration of sodium selenite on early radiation effects in mouse oral mucosa. Strahlenther Onkol 2007;183:36–42.

    Article  PubMed  Google Scholar 

  11. Guo H, Epperly MW, Bernarding M, et al. Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) intratracheal gene therapy reduction of irradiation-induced inflammatory cytokines does not protect orthotopic Lewis lung carcinomas. In Vivo 2003;17:13–21.

    PubMed  CAS  Google Scholar 

  12. Jacobs JP, Jones CM, Baille JP. Characteristics of a human diploid cell designated MRC-5. Nature 1970;227:168–70.

    Article  PubMed  CAS  Google Scholar 

  13. Kaldir M, Cosar-Alas R, Cermik TF, et al. Amifostine use in radiation-induced kidney damage. Preclinical evaluation with scintigraphic and histopathologic parameters. Strahlenther Onkol 2008;184:370–5.

    Article  PubMed  Google Scholar 

  14. Keele BB Jr, McCord JM, Fridovich I. Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J Biol Chem 1970;245:6176–81.

    PubMed  CAS  Google Scholar 

  15. Mann T, Keilin D. Proc R Soc Lond (Series B) 1939;126:303.

    Article  Google Scholar 

  16. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969;244:6049–55.

    PubMed  CAS  Google Scholar 

  17. Michelfelder S, Kohlschutter J, Skorupa A, et al. Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries. PLoS ONE 2009;4:e5122.

    Article  PubMed  Google Scholar 

  18. Muller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003;21:1040–6.

    Article  PubMed  Google Scholar 

  19. Salvetti A, Oreve S, Chadeuf G, et al. Factors influencing recombinant adeno-associated virus production. Hum Gene Ther 1998;9:695–706.

    Article  PubMed  CAS  Google Scholar 

  20. Sellner L, Stiefelhagen M, Kleinschmidt JA, et al. Generation of efficient human blood progenitor-targeted recombinant adeno-associated viral vectors (AAV) by applying an AAV random peptide library on primary human hematopoietic progenitor cells. Exp Hematol 2008;36:957–64.

    Article  PubMed  CAS  Google Scholar 

  21. Stiefelhagen M, Sellner L, Kleinschmidt JA, et al. Application of a haematopoetic progenitor cell-targeted adeno-associated viral (AAV) vector established by selection of an AAV random peptide library on a leukaemia cell line. Genet Vaccines Ther 2008;6:12.

    Article  PubMed  Google Scholar 

  22. Sun J, Chen Y, Li M, et al. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med 1998;24:586–93.

    Article  PubMed  CAS  Google Scholar 

  23. Veldwijk MR, Berlinghoff S, Laufs S, et al. Suicide gene therapy of sarcoma cell lines using recombinant adeno-associated virus 2 vectors. Cancer Gene Ther 2004;11:577–84.

    Article  PubMed  CAS  Google Scholar 

  24. Veldwijk MR, Herskind C, Laufs S, et al. Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells. Radiother Oncol 2004;72:341–50.

    Article  PubMed  CAS  Google Scholar 

  25. Veldwijk MR, Topaly J, Laufs S, et al. Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol Ther 2002;6:272–8.

    Article  PubMed  CAS  Google Scholar 

  26. Waterkamp DA, Muller OJ, Ying Y, et al. Isolation of targeted AAV2 vectors from novel virus display libraries. J Gene Med 2006;8:1307–19.

    Article  PubMed  CAS  Google Scholar 

  27. Yuhas JM, Spellman JM, Culo F. The role of WR-2721 in radiotherapy and/or chemotherapy. Cancer Clin Trials 1980;3:211–6.

    PubMed  CAS  Google Scholar 

  28. Zhong W, Oberley LW, Oberley TD, et al. Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ 1996;7:1175–86.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Wenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veldwijk, M.R., Herskind, C., Sellner, L. et al. Normal-Tissue Radioprotection by Overexpression of the Copper-Zinc and Manganese Superoxide Dismutase Genes. Strahlenther Onkol 185, 517–523 (2009). https://doi.org/10.1007/s00066-009-1973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1973-0

Key Words:

Schlüsselwörter:

Navigation