Skip to main content
Log in

Quality Control of Portal Imaging with PTW EPID QC PHANTOM®

Qualitätskontrolle der Feldkontrollaufnahmen mit PTW EPID QC PHANTOM®

  • Technical Note
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Purpose:

Quality assurance (QA) and quality control (QC) of different electronic portal imaging devices (EPID) and portal images with the PTW EPID QC PHANTOM®.

Material and Methods:

Characteristic properties of images of different file formats were measured on Siemens OptiVue500aSi®, Siemens BeamView Plus®, Elekta iView®, and Varian PortalVision™ and analyzed with the epidSoft® 2.0 program in four radiation therapy centers. The portal images were taken with Kodak X-OMAT V® and the Kodak Portal Localisation ReadyPack® films and evaluated with the same program.

Results:

The optimal exposition both for EPIDs and portal films of different kind was determined. For double exposition, the 2+1 MU values can be recommended in the case of Siemens OptiVue500aSi®, Elekta iView® and Kodak Portal Localisation ReadyPack® films, while for Siemens BeamView Plus®, Varian PortalVision™ and Kodak X-OMAT V® film 7+7 MU is recommended.

Conclusion:

The PTW EPID QC PHANTOM® can be used not only for amorphous silicon EPIDs but also for images taken with a video-based system or by using an ionization chamber matrix or for portal film. For analysis of QC tests, a standardized format (used at the acceptance test) should be applied, as the results are dependent on the file format used.

Ziel:

Qualitätssicherung (QA) und Qualitätskontrolle (QC) verschiedener elektronischer Feldkontrollaufnahmegeräte (EPID) und Portfilme mit einem PTW EPID QC PHANTOM®.

Material und Methodik:

Charakteristische Eigenschaften von Bildern unterschiedlicher Datenformate wurden bestimmt. Die Bilder wurden mit Siemens OptiVue500aSi®, Siemens BeamView Plus®, Elekta iView® und Varian PortalVision™ erzeugt und mit dem Programm epidSoft® 2.0 in vier Strahlentherapieabteilungen analysiert. Für Feldkontrollaufnahmen wurden Kodak X-OMAT V®- und Kodak Portal Localisation ReadyPack®-Filme verwendet und mit demselben Programm analysiert.

Ergebnisse:

Die optimalen Expositionswerte der EPID-Systeme und der Filmkombinationen wurden bestimmt. Für eine Doppelexposition empfehlen sich bei Verwendung von Siemens OptiVue500aSi®, Elekta iView® oder Kodak Portal Localisation ReadyPack®-Film 2+1 MU und bei Verwendung von Siemens BeamView Plus®, Varian PortalVision™ oder Kodak X-OMAT V®-Film 7+7 MU.

Schlussfolgerung:

Das PTW EPID QC PHANTOM® eignet sich nicht nur zur Kontrolle amorpher Siliciumsysteme, sondern auch für mit Hilfe eines Videosystems oder einer Ionisationskammermatrix angefertigte Bilder oder eine Film-Folien-Kombination als Detektor. Da die Resultate vom Dateiformat abhängig sind, sollte zur Analyse des QC-Tests ein konstantes Format gewählt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahnesjo A, Hardermark B, Isacsson U, et al. The IMRT information process-mastering the degrees of freedom in external beam therapy. Phys Med Biol 2006;51:R381–402.

    Article  PubMed  Google Scholar 

  2. Beavis AW. Is tomotherapy the future of IMRT? Br J Radiol 2004;77: 285–95.

    Article  PubMed  CAS  Google Scholar 

  3. Bohsung J, Gillis S, Arrans R, et al. IMRT treatment planning - a comparative inter-system and intercentre planning exercice of the ESTRO QUASIMODO Group. Radiother Oncol 2005;76:354–61.

    Article  PubMed  Google Scholar 

  4. Bratengeier K. Applications of two-step intensity modulated arc therapy. Strahlenther Onkol 2001;177:394–403.

    Article  PubMed  CAS  Google Scholar 

  5. Bratengeier K, Guckenberger M, Meyer J, et al. A comparison between 2-step IMRT and conventional IMRT planning, Radiother Oncol 2007;84: 298–306.

    Article  PubMed  Google Scholar 

  6. Cao D, Holmes T, Afghan M, et al. Comparison of plan quality provided by intensity-modulated arc therapy and helical tomotherapy. Int J Radiat Oncol Biol Phys 2007;69:240–50.

    PubMed  Google Scholar 

  7. Carol M, Grant WH 3rd, Pavord D, et al. Initial clinical experience with the Peacock intensity modulation of a 3-D conformal radiation therapy system. Stereotact Funct Neurosurg 1996;66:30–4.

    Article  PubMed  CAS  Google Scholar 

  8. Duthoy W, De Gersem W, Vergote K, et al. Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 2004;60:794–806.

    PubMed  Google Scholar 

  9. Earl MA, Shepard DM, Naqvi S, et al. Inverse planning for intensity-modulated arc therapy using direct aperture optimization. Phys Med Biol 2003;48:1075–89.

    Article  PubMed  CAS  Google Scholar 

  10. Edlund T, Zimmer JR, Gannett DE. IMRT for the treatment of prostate cancer: a comparison of a forward-planned technique and an inverse-planned technique utilizing a dose gradient method. Med Dosim 2004;29:128–33.

    Article  PubMed  Google Scholar 

  11. Fiorino C, Dell’Oca I, Pierelli A, et al. Significant improvement in normal tissue sparing and target coverage for head and neck cancer by means of helical tomotherapy. Radiother Oncol 2006;78:276–82.

    Article  PubMed  Google Scholar 

  12. Fiorino C, Dell’Oca I, Pierelli A, et al. Simultaneous integrated boost (SIB) for nasopharynx cancer with helical tomotherapy. A planning study. Strahlenther Onkol 2007;183:497–505.

    Article  PubMed  Google Scholar 

  13. Hardemark B, Liander A, Rehbinder H, et al. Direct machine parameter optimization with RayMachine in Pinnacle. RaySearch White Paper. RaySearch Laboratories AB, Stockholm, Sweden: 2003.

    Google Scholar 

  14. Ma L, Yu CX, Earl M, et al. Optimized intensity-modulated arc therapy for prostate cancer treatment. Int J Cancer 2001;96:379–84.

    Article  PubMed  CAS  Google Scholar 

  15. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993;20:1709–19.

    Article  PubMed  CAS  Google Scholar 

  16. Mihai A, Rakovitch E, Sixel K, et al. Inverse vs forward breast IMRT planning. Med Dosim 2005;30:149–54.

    Article  PubMed  Google Scholar 

  17. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008;35:310–7.

    Article  PubMed  Google Scholar 

  18. Rochet N, Sterzing F, Jensen A, et al. Helical tomotherapy as a new treatment technique for whole abdominal irradiation. Strahlenther Onkol 2008;184:145–9.

    Article  PubMed  Google Scholar 

  19. Shepard DM, Cao D, Afghan MK, et al. An arc-sequencing algorithm for intensity modulated arc therapy. Med Phys 2007;34:464–70.

    Article  PubMed  CAS  Google Scholar 

  20. Shepard DM, Earl MA, Li XA, et al. Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 2002;29:1007–18.

    Article  PubMed  CAS  Google Scholar 

  21. Sterzing F, Schubert K, Sroka-Perez G, et al. Helical tomotherapy. Experiences of the first 150 patients in Heidelberg. Strahlenther Onkol 2008;184: 8–14.

    Article  PubMed  Google Scholar 

  22. Welsh S, Patel RR, Ritter MA, et al. Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res Treat 2002;1:311–6.

    PubMed  Google Scholar 

  23. Wiezorek T, Voigt A, Metzger N, et al. Experimental determination of peripheral doses for different IMRT techniques delivered by a Siemens linear accelerator. Strahlenther Onkol 2008;184:73–9.

    Article  PubMed  Google Scholar 

  24. Wong E, Chen JZ, Greenland J, et al. Intensity-modulated arc therapy simplified. Int J Radiat Oncol Biol Phys 2003;53:222–35.

    Google Scholar 

  25. Yu CX. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1995;40:1435–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csilla Pesznyák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesznyák, C., Fekete, G., Mózes, Á. et al. Quality Control of Portal Imaging with PTW EPID QC PHANTOM® . Strahlenther Onkol 185, 56–60 (2009). https://doi.org/10.1007/s00066-009-1905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1905-z

Key Words:

Schlüsselwörter:

Navigation