Skip to main content
Log in

Quasi-IMAT Study with Conventional Equipment to Show High Plan Quality with a Single Gantry Arc

Quasi-IMAT-Studie zur Untersuchung der Planqualität mit einer einzigen Gantryrotation mit konventioneller Ausrüstung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background and Purpose:

Nowadays, intensity-modulated arc therapy (IMAT) for clinical use is mostly based on forward planning. The aim of this work is to investigate the potential of a step-and-shoot quasi-IMAT (qIMAT) technique to improve plan quality.

Material and Method:

qIMAT plans with 18 and 36 beams were generated with a total number of 36 segments. Additionally, the number of segments was increased to 72, in order to investigate if the quality of the plans improves with the number of beams and segments. A conventional six-field intensity-modulated radiation therapy (IMRT) plan was used as a reference. The beam setup was applied to the CarPet phantom and to five prostate cancer patients.

Results:

In the phantom case, the dose received by the organ at risk (OAR) decreased considerably by using qIMAT. At the same time, coverage and homogeneity of planning target volume (PTV) remained unaffected. For the prostate cases, a good dose coverage was accomplished inside the PTV. Rectum and bladder were better spared with qIMAT. When increasing the number of segments, only a slight improvement of the plan quality was observed.

Conclusion:

The study showed that qIMAT improves the sparing of OARs while keeping the uniformity within the PTV, when compared with conventional IMRT. The more concave the PTV, the more noticeable is this behavior. The qIMAT technique has the advantage that it can be realized with a conventional equipment. The plan quality is high even with a single gantry arc and one segment per beam direction.

Hintergrund und Ziel:

Die klinische Anwendung der intensitätsmodulierten Arc-Therapie (IMAT) erfolgt derzeit hauptsächlich durch Vorwärtsplanung. Das Ziel dieser Studie ist, das Potential einer „step-and-shoot“-Quasi-IMAT-(qIMAT-)Technik zur Erhöhung der Planqualität zu untersuchen.

Material und Methodik:

qIMAT-Pläne mit 18 und 36 Feldern und maximal 36 Segmenten wurden erzeugt. Zusätzlich wurde die Segmentzahl auf 72 erhöht, um eine potentielle Verbesserung in Abhängigkeit von der Felder- und Segmentzahl zu untersuchen. Ein konventioneller IMRT-Plan (intensitätsmodulierte Strahlentherapie) mit sechs Feldern wurde als Referenz benutzt. Die Konfiguration der Felder wurde am CarPet-Phantom und an fünf Prostatakrebsfällen angewendet.

Ergebnisse:

Beim Phantom nahm die deponierte Dosis im Risikoorgan (OAR) deutlich ab, wenn qIMAT angewendet wurde. Gleichzeitig blieben die Abdeckung des Zielvolumens und Homogenität des Planungszielvolumens (PTV) unverändert. Bei den Prostatafällen konnte eine gute Abdeckung des Zielvolumens erreicht werden. Rektum und Blase wurden mit qIMAT besser geschont. Bei Erhöhung der Segmentzahl wurde eine leichte Verbesserung beobachtet.

Schlussfolgerung:

Die Untersuchung zeigte, dass qIMAT weniger Dosis im OAR deponierte, während die Homogenität im PTV im Vergleich zur konventionellen IMRT gleich blieb. Dieses Verhalten wird ausgeprägter, wenn der Grad der Konkavität des PTVs zunimmt. Der Vorteil der qIMAT-Methode besteht darin, dass eine Verbesserung der Planqualität mit konventioneller Ausrüstung erreicht werden kann. Die Planqualität ist bereits mit einer Quasirotation bei einem Segment pro Einstrahlrichtung hoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Madyan Y, Polednik M, Rahn A, et al. Improving dose homogeneity in large breasts by IMRT. Efficacy and dosimetric accuracy of different techniques. Strahlenther Onkol 2008;184:86–92.

    Article  PubMed  Google Scholar 

  2. Bucciolini M, Buonamici FB, Casati M. Verification of IMRT fields by film dosimetry. Med Phys 2004;31:161–8.

    Article  PubMed  Google Scholar 

  3. Combs SE, Konkel S, Thilmann C, et al. Local high-dose radiotherapy and sparing of normal tissue using intensity-modulated radiotherapy (IMRT) for mucosal melanomas of the nasal cavity and paranasal sinuses. Strahlenther Onkol 2007;183:63–8.

    Article  PubMed  Google Scholar 

  4. Dobler B, Lorenz F, Wertz H, et al. Intensity-modulated radiation therapy (IMRT) with different combinations of treatment-planning systems and linacs. Strahlenther Onkol 2006;182:481–8.

    Article  PubMed  Google Scholar 

  5. Dogan N, Leybovich LB, Sethi A. Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy. Phys Med Biol 2002;47:4121–30.

    Article  PubMed  Google Scholar 

  6. Ernst-Stecken A, Lambrecht U, Mueller R, et al. Dose escalation in large anterior skull-base tumors by means of IMRT. Strahlenther Onkol 2006;182:183–9.

    Article  PubMed  Google Scholar 

  7. Estephan J, Mutic S, Harms WB, et al. Dosimetry of therapeutic photon beams using an extended dose range film. Med Phys 2002;29:2438–45.

    Article  Google Scholar 

  8. Jursinic PA, Nelms B. A 2D diode array and analysis software for verification of intensity modulated radiation therapy delivery. Med Phys 2003;30: 870–9.

    Article  PubMed  Google Scholar 

  9. Kirov AS, Caravelli G, Palm A, et al. Pencil beam approach for correcting energy dependence artifact in film dosimetry for IMRT verification. Med Phys 2006;33:3690–9.

    Article  PubMed  Google Scholar 

  10. Leturneau D, Gulam M, Yan D, et al. Evaluation of a 2D diode array for IMRT quality assurance. Radiother Oncol 2004;70:199–206.

    Article  Google Scholar 

  11. Low D, Harms W, Mutic S, et al. A technique for the quanitative evaluation of dose distributions. Med Phys 1993;20:1709–19.

    Article  Google Scholar 

  12. Low DA, Dempsey JF. Evaluation of gamma-dose distribution comparison method. Med Phys 2003;30:2455–64.

    Article  PubMed  Google Scholar 

  13. Olch AJ. Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance. Med Phys 2002;29:2159–68.

    Article  PubMed  Google Scholar 

  14. Olch AJ. Evaluation of a computed radiography system for megavoltage photon beam dosimetry. Med Phys 2005;32:2987–99.

    Article  PubMed  Google Scholar 

  15. Pai S, Das I, Dempsey J, et al. TG-69: radiographic film for megavoltage beam dosimetry. Med Phys 2007;34:2228–58.

    Article  PubMed  CAS  Google Scholar 

  16. Palm A, Kirov AS, LoSasso T. Predicting energy-response of radiographic film in a 6MV x-ray beam using Monte-Carlo calulated fluence spectra and absorbed dose. Med Phys 2004;31:3168–78.

    Article  PubMed  Google Scholar 

  17. Palm A, LoSasso T. Influence of phantom material and phantom size on radiographic film response in therapy photon beams. Med Phys 2005;32: 2434–42.

    Article  PubMed  Google Scholar 

  18. Poppe B, Blechschmidt A, Djouguela A, et al. Two-dimensonal ionization chamber arrays for IMRT plan verification. Med Phys 2006;33:1005–15.

    Article  PubMed  Google Scholar 

  19. Rochet N, Sterzing F, Jensen A, et al. Helical tomotherapy as a new treatment technique for whole abdominal irradiation. Strahlenther Onkol. 2008;184:145–9.

    Article  PubMed  Google Scholar 

  20. Schneider F, Polednik M, Wolff D, et al. Evaluation von Gafchromic-EBT-Filmen für die IMRT-Plan-Verifikation. Strahlenther Onkol 2006;182 (Sondernr 1):99.

    Article  Google Scholar 

  21. Schneider RA, Schultze J, Jensen JM, et al. 20 years of experience in static intensity-modulated total-body irradiation and lung toxicity. Results of 257 consecutive patients. Strahlenther Onkol 2007;183:545–51.

    Article  PubMed  Google Scholar 

  22. Schwedas M, Scheithauer M, Wiezorek T, et al. Evaluierung des Gafchromic-EBT-Filmes für die IMRT-Qalitätssicherung. Strahlenther Onkol 2006;182 (Sondernr 1):95.

    Google Scholar 

  23. Van Dyk J, Barnett RB, Cygler JE, et al. Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 1993;26:261–73.

    PubMed  Google Scholar 

  24. Wiezorek T, Banz N, Schwedas M, et al. Dosimetric quality assurance for intensity-modulated radiation therapy - feasibility study for a filmless approach. Strahlenther Onkol 2005;181:468–74.

    Article  PubMed  Google Scholar 

  25. Winkler P, Zurl B, Guss H, et al. Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods. Phys Med Biol 2005;50:643–54.

    Article  PubMed  Google Scholar 

  26. Zhu XR, Jursanic PA, Grimm DF, et al. Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator. Med Phys 2002;29:1687–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Alvarez Moret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez Moret, J., Kölbl, O. & Bogner, L. Quasi-IMAT Study with Conventional Equipment to Show High Plan Quality with a Single Gantry Arc. Strahlenther Onkol 185, 41–48 (2009). https://doi.org/10.1007/s00066-009-1890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1890-2

Key Words:

Schlüsselwörter:

Navigation