Skip to main content
Log in

Pathophysiologie der Blutung

Pathophysiology of bleeding

  • Leitthema
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Blutung ist mit einer erhöhten Morbidität und Mortalität assoziiert. In der Pathophysiologie einer Blutung spielen anatomische und hämostatische Ursachen eine zentrale Rolle, wobei anatomische Ursachen die weit häufigere Blutungsursache darstellen. Während Trauma und operative Eingriffe die führenden Ursachen einer Blutung in der operativen Medizin darstellen, stehen in der inneren Medizin die gastrointestinalen Blutungen im Vordergrund. Große Blutungen führen sekundär zu homöostatischen Störungen, die nicht nur die weitere Blutung verstärken, sondern auch in der Pathogenese der Organdysfunktion eine wichtige Rolle spielen. Erworbene Koagulopathien infolge einer antithrombotischen Therapie oder einer Grunderkrankung tragen zum Ausmaß und zur Dynamik einer Blutung bei, während hereditäre Blutungsdiathesen selten vorkommen. Das Gleichgewicht zwischen der physiologischen Pro- und Antikoagulation spielt in der Pathophysiologie der Blutung und Gerinnung eine große Rolle. Daher lässt sich die Pathophysiologie der Blutung allein durch einfach verfügbaren Gerinnungsparameter nicht abbilden. Das Ziel der Gerinnungskorrektur im Rahmen der Behandlung einer lebensbedrohlichen Blutung ist nicht die Normalisierung der Gerinnung, sondern die Blutstillung. Neben der genauen klinischen Einschätzung unter Berücksichtigung der Physiologie der Gerinnung kann die zielgerichtete Gerinnungsdiagnostik zur sinnvollen Steuerung der Gerinnungstherapie beitragen.

Abstract

Bleeding is associated with an increased morbidity and mortality. Anatomic and hemostatic causes play a central role in the pathophysiology of bleeding, with anatomic causes being by far more common. While trauma and invasive procedures are the leading causes of bleeding in surgical disciplines, gastrointestinal bleeding is the major cause of bleeding in internal medicine. Major bleedings lead to secondary homeostatic changes, which in turn not only contribute to further bleeding, but also to the pathogenesis of organ dysfunction. Acquired coagulopathies due to antithrombotic treatment or an underlying disease also contribute to the extent and the dynamics of bleeding, while hereditary bleeding disorders are seldom. The balance between the physiological pro- and anticoagulant pathway plays a significant role in the pathophysiology of bleeding and coagulation. Therefore, the pathophysiology of bleeding cannot be described by means of easily available laboratory coagulation workup. The aim of coagulation correction during the management of life-threatening bleeding is not to normalize coagulation, but rather to stop bleeding. Besides a careful clinical evaluation of the course of bleeding coupled with basic understanding of the physiology of coagulation, targeted laboratory coagulation workup can contribute to a rational coagulation treatment concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Cannon JW (2018) Hemorrhagic shock. N Engl J Med 378:370–379

    Article  PubMed  Google Scholar 

  2. Sy E, Sklar MC, Lequier L et al (2017) Anticoagulation practices and the prevalence of major bleeding, thromboembolic events, and mortality in venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. J Crit Care 39:87–96

    Article  PubMed  Google Scholar 

  3. Al-Attar N, Johnston S, Jamous N et al (2019) Impact of bleeding complications on length of stay and critical care utilization in cardiac surgery patients in England. J Cardiothorac Surg 14:64

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nilsson CU, Bentzer P, Andersson LE et al (2020) Mortality and morbidity of low-grade red blood cell transfusions in septic patients: a propensity score-matched observational study of a liberal transfusion strategy. Ann Intensive Care 10:111

    Article  PubMed  PubMed Central  Google Scholar 

  5. Esper SA, Wallisch WJT, Ryan J et al (2021) Platelet transfusion is associated with 90-day and 1‑year mortality for adult patients requiring veno-arterial extracorporeal membrane oxygenation. Vox Sang 116:440–450

    Article  CAS  PubMed  Google Scholar 

  6. Decousus H, Tapson VF, Bergmann JF et al (2011) Factors at admission associated with bleeding risk in medical patients: findings from the IMPROVE investigators. Chest 139:69–79

    Article  PubMed  Google Scholar 

  7. Souverein PC, van den Ham HA, Huerta C et al (2021) Comparing risk of major bleeding between users of different oral anticoagulants in patients with nonvalvular atrial fibrillation. Br J Clin Pharmacol 87:988–1000

    Article  CAS  PubMed  Google Scholar 

  8. Kauvar DS, Lefering R, Wade CE (2006) Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma 60:S3–S11

    PubMed  Google Scholar 

  9. Ageron FX, Gayet-Ageron A, Steyerberg E et al (2019) Prognostic model for traumatic death due to bleeding: cross-sectional international study. BMJ Open 9:e26823

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brohi K, Gruen RL, Holcomb JB (2019) Why are bleeding trauma patients still dying? Intensive Care Med 45:709–711

    Article  PubMed  Google Scholar 

  11. Spahn DR, Bouillon B, Cerny V et al (2019) The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 23:98

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ye X, Lafuma A, Torreton E et al (2013) Incidence and costs of bleeding-related complications in French hospitals following surgery for various diagnoses. BMC Health Serv Res 13:186

    Article  PubMed  PubMed Central  Google Scholar 

  13. Colson PH, Gaudard P, Fellahi JL et al (2016) Active bleeding after cardiac surgery: a prospective observational multicenter study. PLoS ONE 11:e162396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hreinsson JP, Kalaitzakis E, Gudmundsson S et al (2013) Upper gastrointestinal bleeding: incidence, etiology and outcomes in a population-based setting. Scand J Gastroenterol 48:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hreinsson JP, Gumundsson S, Kalaitzakis E et al (2013) Lower gastrointestinal bleeding: incidence, etiology, and outcomes in a population-based setting. Eur J Gastroenterol Hepatol 25:37–43

    Article  PubMed  Google Scholar 

  16. Hoffman M, Monroe DM 3rd (2001) A cell-based model of hemostasis. Thromb Haemost 85:958–965

    Article  CAS  PubMed  Google Scholar 

  17. Chang R, Cardenas JC, Wade CE et al (2016) Advances in the understanding of trauma-induced coagulopathy. Blood 128:1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Granholm A, Zeng L, Dionne JC et al (2019) Predictors of gastrointestinal bleeding in adult ICU patients: a systematic review and meta-analysis. Intensive Care Med 45:1347–1359

    Article  PubMed  Google Scholar 

  19. Wolberg AS, Meng ZH, Monroe DM 3rd et al (2004) A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma 56:1221–1228

    Article  CAS  PubMed  Google Scholar 

  20. Engstrom M, Schott U, Romner B et al (2006) Acidosis impairs the coagulation: a thromboelastographic study. J Trauma 61:624–628

    Article  PubMed  Google Scholar 

  21. Martini WZ, Holcomb JB (2007) Acidosis and coagulopathy: the differential effects on fibrinogen synthesis and breakdown in pigs. Ann Surg 246:831–835

    Article  PubMed  Google Scholar 

  22. Li XQ, Dong L, Luo JY (2004) Effects of different infusion volumes on hemodynamics of portal hypertension canines after hemorrhagic shock. Hepatobiliary Pancreat Dis Int 3:571–576

    PubMed  Google Scholar 

  23. Mccormick PA, Jenkins SA, Mcintyre N et al (1995) Why portal hypertensive varices bleed and bleed: a hypothesis. Gut 36:100–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsopanoglou NE, Maragoudakis ME (2004) Role of thrombin in angiogenesis and tumor progression. Semin Thromb Hemost 30:63–69

    Article  CAS  PubMed  Google Scholar 

  25. Ruf W, Yokota N, Schaffner F (2010) Tissue factor in cancer progression and angiogenesis. Thromb Res Suppl 2:S36–38

    Article  Google Scholar 

  26. Lenting PJ, Casari C, Christophe OD et al (2012) von Willebrand factor: the old, the new and the unknown. J Thromb Haemost 10:2428–2437

    Article  CAS  PubMed  Google Scholar 

  27. van den Berg HM, De Groot PH, Fischer K (2007) Phenotypic heterogeneity in severe hemophilia. J Thromb Haemost 5(1):151–156

    Article  PubMed  Google Scholar 

  28. Zidane M, Schram MT, Planken EW et al (2000) Frequency of major hemorrhage in patients treated with unfractionated intravenous heparin for deep venous thrombosis or pulmonary embolism: a study in routine clinical practice. Arch Intern Med 160:2369–2373

    Article  CAS  PubMed  Google Scholar 

  29. van Rein N, Biedermann JS, van der Meer FJM et al (2017) Major bleeding risks of different low-molecular-weight heparin agents: a cohort study in 12 934 patients treated for acute venous thrombosis. J Thromb Haemost 15:1386–1391

    Article  PubMed  Google Scholar 

  30. van Rein N, Heide-Jørgensen U, Lijfering WM et al (2019) Major bleeding rates in atrial fibrillation patients on single, dual, or triple antithrombotic therapy. Circulation 139:775–786

    Article  PubMed  Google Scholar 

  31. Pasea L, Chung SC, Pujades-Rodriguez M et al (2019) Bleeding in cardiac patients prescribed antithrombotic drugs: electronic health record phenotyping algorithms, incidence, trends and prognosis. BMC Med 17:206

    Article  PubMed  PubMed Central  Google Scholar 

  32. Steffel J, Verhamme P, Potpara TS et al (2018) The 2018 European heart rhythm association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 39:1330–1393

    Article  CAS  PubMed  Google Scholar 

  33. Crowther MA, Warkentin TE (2008) Bleeding risk and the management of bleeding complications in patients undergoing anticoagulant therapy: focus on new anticoagulant agents. Blood 111:4871–4879

    Article  CAS  PubMed  Google Scholar 

  34. Crowther MA, Cook DJ, Meade MO et al (2005) Thrombocytopenia in medical-surgical critically ill patients: prevalence, incidence, and risk factors. J Crit Care 20:348–353

    Article  PubMed  Google Scholar 

  35. Morowski M, Vögtle T, Kraft P et al (2013) Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice. Blood 121:4938–4947

    Article  CAS  PubMed  Google Scholar 

  36. Slichter SJ (2004) Relationship between platelet count and bleeding risk in thrombocytopenic patients. Transfus Med Rev 18:153–167

    Article  PubMed  Google Scholar 

  37. Wada H, Matsumoto T, Yamashita Y (2014) Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J Intensive Care 2:15

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brohi K, Cohen MJ, Ganter MT et al (2008) Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 64:1211–1217 (discussion 1217)

    PubMed  Google Scholar 

  39. Chapman MP, Moore EE, Moore HB et al (2016) Overwhelming tPA release, not PAI‑1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg 80:16–23 (discussion 23–15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vincentelli A, Susen S, Le Tourneau T et al (2003) Acquired von Willebrand syndrome in aortic stenosis. N Engl J Med 349:343–349

    Article  PubMed  Google Scholar 

  41. Tiede A (2012) Diagnosis and treatment of acquired von Willebrand syndrome. Thromb Res 130(2):S2–6

    Article  CAS  PubMed  Google Scholar 

  42. Mehta R, Athar M, Girgis S et al (2019) Acquired von Willebrand syndrome (AVWS) in cardiovascular disease: a state of the art review for clinicians. J Thromb Thrombolysis 48:14–26

    Article  PubMed  PubMed Central  Google Scholar 

  43. Franchini M, Mannucci PM (2020) Acquired von Willebrand syndrome: focused for hematologists. Haematologica 105:2032–2037

    Article  PubMed  PubMed Central  Google Scholar 

  44. Knoebl P, Marco P, Baudo F et al (2012) Demographic and clinical data in acquired hemophilia A: results from the European acquired haemophilia registry (EACH2). J Thromb Haemost 10:622–631

    Article  CAS  PubMed  Google Scholar 

  45. Kruse-Jarres R (2015) Acquired bleeding disorders in the elderly. Hematology Am Soc Hematol Educ Program 2015:231–236

    Article  PubMed  Google Scholar 

  46. Tiede A, Collins P, Knoebl P et al (2020) International recommendations on the diagnosis and treatment of acquired hemophilia A. Haematologica 105:1791–1801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mercer PF, Chambers RC (2013) Coagulation and coagulation signalling in fibrosis. Biochim Biophys Acta 1832:1018–1027

    Article  CAS  PubMed  Google Scholar 

  48. Dhar A, Sadiq F, Anstee QM et al (2018) Thrombin and factor Xa link the coagulation system with liver fibrosis. BMC Gastroenterol 18:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chesebro BB, Rahn P, Carles M et al (2009) Increase in activated protein C mediates acute traumatic coagulopathy in mice. Shock 32:659–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petros S, Siegemund R, Siegemund A (2021) Increased activated protein C to protein C ratio in sepsis and cirrhosis. Thromb Res 202:74–76

    Article  CAS  PubMed  Google Scholar 

  51. Koscielny J, Ziemer S, Radtke H et al (2004) A practical concept for preoperative identification of patients with impaired primary hemostasis. Clin Appl Thromb Hemost 10:195–204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirak Petros.

Ethics declarations

Interessenkonflikt

S. Petros erhielt Vortragshonorar von CSL Behring und Sanofi. Er hat außerdem eine Forschungskooperation mit folgenden Firmen: CSL Behring, Leo, Stago, Werfen.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Valentin Fuhrmann, Duisburg

Sirak Petros, Leipzig

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petros, S. Pathophysiologie der Blutung. Med Klin Intensivmed Notfmed 116, 475–481 (2021). https://doi.org/10.1007/s00063-021-00844-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-021-00844-x

Schlüsselwörter

Keywords

Navigation