Kosten als Instrument zur Effizienzbeurteilung intensivmedizinischer Funktionseinheiten

Cost analysis as a tool for assessing the efficacy of intensive care units

Zusammenfassung

Hintergrund

Das „Krankenhausstrukturgesetz“ sieht vor, die Landeskrankenhausplanung künftig an Qualitätskriterien zu orientieren. Dabei soll auch die Effektivität der medizinischen Versorgung mittels Kosten-Nutzen-Analysen (KNA) bewertet werden. KNA intensivmedizinischer Funktionseinheiten benötigen zur Objektivierung eine Normierung (Adjustierung) der Kosten an die Ausgangssituation. Die vorliegende Studie wollte untersuchen, inwieweit Behandlungskosten auf patientenspezifische Ausgangsvariablen (u. a. Art und Schweregrad der Grunderkrankung) bezogen werden können.

Methodik

Kosten wurden von 2000–2004 auf 14 Intensivstationen in 9 deutschen Universitätskliniken mittels einer sog. Bottom-up-Methode ermittelt und mit demographischen Variablen bzw. mit Informationen zur Art (International Classification of Diseases [ICD]-10-Codes) und dem Schweregrad (intensivmedizinische Scores) der Grunderkrankung bei Aufnahme auf die Intensivstation zusammengeführt. Verschiedene statistische Modelle wurden zur Beschreibung der Kostendeterminanten untersucht.

Ergebnisse

Ausgewertet wurden 3803 Intensivpatienten. Die gesamten Kosten für die Therapie pro Patient lagen im Median bei 3199 € (Interquartilsabstand [IQR] 1768–6659 €). Die Prognosegüte war bei allen Modellen unzureichend und der geschätzte mittlere absolute Prognosefehler lag mindestens bei 3860 € (relativer Fehler 66 %; Extreme-gradient-boosting-Modell).

Schlussfolgerung

Mit den gegenwärtig verfügbaren Instrumenten (patientenspezifische Ausgangsvariablen) ist eine Normierung der Kosten und damit eine objektive KNA intensivmedizinischer Funktionseinheiten nicht durchführbar. Faktoren, die zum Zeitpunkt der Aufnahme unbekannt sind, scheinen für einen Großteil der anfallenden Kosten verantwortlich zu sein.

Abstract

Background

The German “Hospital Structure Act” intends to align the state hospital planning on quality criteria. Within this process cost-utility analyses (CUAs) shall be used to assess the efficacy of medical care. To be objective, CUAs of intensive care units (ICUs) require standardization (adjustment) of costs. The present study analyzed the extent to which treatment costs are related to patient-specific baseline variables (such as type and severity of the primary disease).

Methods

From 2000–2004, a bottom-up procedure was used to quantify total costs on 14 ICUs in nine German university hospitals. Results were combined with demographic data, and data indicating type (ICD-10 codes) and severity (ICU scoring systems) of the primary disease at ICU admission. Various statistical models were tested to identify that which best described the associations between baseline variables and costs.

Results

In all, 3803 critically ill patients could be examined. The median of treatment costs per patient was 3199 € (IQR 1768–6659 €). No model allowed an acceptably precise adjustment of costs; the estimated mean absolute prognostic error was at least 3860 € (mean relative prognostic error 66%), when we tested an Extreme Gradient Boosting Model.

Conclusion

Instruments which are currently available (cost adjustment based on patient-specific baseline variables) do not allow a standardization of costs, and an objective CUA of ICUs. Factors unknown at baseline may cause a large portion of treatment costs.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. 1.

    Osterloh F (2015) Qualitätsmessung im Stationären Bereich: Die Erwartungen sind hoch. Dtsch Arztebl 112(20):A-901/B-757/C-733

    Google Scholar 

  2. 2.

    Frutiger A, Moreno R, Thijs LG, Carlet J (1998) A clinician’s guide to the use of quality terminology. Intensive Care Med 24:860–863

    CAS  Article  Google Scholar 

  3. 3.

    Gold M, Siegel J, Russel L, Weinstein M (Hrsg) (1996) Cost-effectiveness in health and medicine. Oxford University Press, New York

    Google Scholar 

  4. 4.

    Graf J, Wagner J, Graf C, Koch KC, Janssens U (2005) Five-year survival, quality of life, and individual costs of 303 consecutive medical intensive care patients – a cost-utility analysis. Crit Care Med 33(3):547–555

    Article  Google Scholar 

  5. 5.

    Statistisches Bundesamt (2016) Pressemitteilung vom 8. März 2016 – 080/16. https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2016/03/PD16_080_23611pdf.pdf?__blob=publicationFile. Zugegriffen: 28.2.2017

    Google Scholar 

  6. 6.

    Martin E (1998) Sind Fortschritte in der Intensivmedizin noch finanzierbar? J Anästh Intensivbehandl 2:1–9

    CAS  Google Scholar 

  7. 7.

    Milbrandt EB, Kersten A, Rahim MT, Dremsizov TT, Clermont G, Cooper LM, Angus DC, Linde-Zwirble WT (2008) Growth of intensive care unit resource use and its estimated cost in medicare. Crit Care Med 36:2504–2510

    Article  Google Scholar 

  8. 8.

    Curtis JR, Engelberg RA, Bensink ME, Ramsey SD (2012) End-of-life care in the intensive care unit: can we simultaneously increase quality and reduce costs? Am J Respir Crit Care Med 186(7):587–592

    Article  Google Scholar 

  9. 9.

    Kramer AA, Zimmerman JE (2010) A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay. BMC Med Inform Decis Mak 10:27

    Article  Google Scholar 

  10. 10.

    Reifferscheid A, Pomorin N, Wasem J (2015) Extent of rationing and overprovision in stationary care: results of a nationwide survey of German hospitals. Dtsch Med Wochenschr 140(13):e129–e135

    Article  Google Scholar 

  11. 11.

    Bangert K, Borch J, Ferahli S, Braune SA, de Heer G, Kluge S (2016) Inadequate ICU-admissions: A 12-month prospective cohort study at a German University Hospital. Med Klin Intensivmed Notfmed 111(4):310–316

    CAS  Article  Google Scholar 

  12. 12.

    Moerer O, Schmid A, Hofmann M, Herklotz A, Reinhart K, Werdan K, Schneider H, Burchardi H (2002) Direct costs of severe sepsis in three German intensive care units based on retrospective electronic patient record analysis of resource use. Intensive Care Med 28(10):1440–1446

    Article  Google Scholar 

  13. 13.

    Neilson AR, Moerer O, Burchardi H, Schneider H (2004) A new concept for DRG-based reimbursement of services in German intensive care units: results of a pilot study. Intensive Care Med 30(6):1220–1223

    Article  Google Scholar 

  14. 14.

    Moerer O, Plock E, Mgbor U, Schmid A, Schneider H, Wischnewsky MB, Burchardi H (2007) A German national prevalence study on the cost of intensive care: an evaluation from 51 intensive care units. Crit Care 11(3):R69

    Article  Google Scholar 

  15. 15.

    Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). ACM, New York, S 785–794

    Chapter  Google Scholar 

  16. 16.

    Graf J, Graf C, Koch KC, Hanrath P, Janssens U (2003) Cost analysis and outcome prediction with the Therapeutic Intervention Scoring System (TISS and TISS-28). Med Klin (Munich) 98(3):123–132

    Article  Google Scholar 

  17. 17.

    Wunsch H, Gershengorn H, Scales DC (2012) Economics of ICU organization and management. Crit Care Clin 28(1):25–37

    Article  Google Scholar 

  18. 18.

    Roberts RR, Frutos PW, Ciavarella GG, Gussow LM, Mensah EK, Kampe LM, Straus HE, Joseph G, Rydman RJ (1999) Distribution of variable vs fixed costs of hospital care. JAMA 281:644–649

    CAS  Article  Google Scholar 

  19. 19.

    Moran JL, Solomon PJ (2012) ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australian and New Zealand Intensive Care Society (ANZICS). A review of statistical estimators for risk-adjusted length of stay: analysis of the Australian and new Zealand Intensive Care Adult Patient Data-Base, 2008–2009. BMC Med Res Methodol 12:68

    Article  Google Scholar 

  20. 20.

    Verburg IW, Atashi A, Eslami S, Holman R, Abu-Hanna A, de Jonge E, Peek N, de Keizer NF (2017) Which models can I use to predict adult ICU length of stay? A systematic review. Crit Care Med 45(2):e222–e231

    Article  Google Scholar 

  21. 21.

    Wilkinson DJ, Truog RD (2013) The luck of the draw: physician-related variability in end-of-life decision-making in intensive care. Intensive Care Med 39(6):1128–1132

    Article  Google Scholar 

  22. 22.

    Curtis JR, Engelberg RA, Teno JM (2017) Understanding variability of end-of-life care in the ICU for the elderly. Intensive Care Med 43(1):94–96

    Article  Google Scholar 

  23. 23.

    Talmor D, Shapiro N, Greenberg D, Stone PW, Neumann PJ (2006) When is critical care medicine cost-effective? A systematic review of the cost-effectiveness literature. Crit Care Med 34(11):2738–2747

    Article  Google Scholar 

  24. 24.

    Graf J, Graf C, Janssens U (2002) Analysis of resource use and cost-generating factors in a German medical intensive care unit employing the Therapeutic Intervention Scoring System (TISS-28). Intensive Care Med 28(3):324–331

    Article  Google Scholar 

  25. 25.

    Deutscher Ethikrat (German Ethics Council) (2011) Medical benefits and costs in health care: the normative role of their evaluation. Opinion. Deutscher Ethikrat, Berlin

    Google Scholar 

  26. 26.

    Bagshaw SM, Webb SA, Delaney A et al (2009) Very old patients admitted to intensive care in Australia and New Zealand: a multi-centre cohort analysis. Crit Care 13(2):R45

    Article  Google Scholar 

  27. 27.

    Cavallazzi R, Marik PE, Hirani A, Pachinburavan M, Vasu TS, Leiby BE (2010) Association between time of admission to the ICU and mortality: a systematic review and metaanalysis. Chest 138(1):68–75

    Article  Google Scholar 

  28. 28.

    Brunot V, Landreau L, Corne P, Platon L, Besnard N, Buzançais A, Daubin D, Serre JE, Molinari N, Klouche K (2016) Mortality Associated with Night and Weekend Admissions to ICU with On-Site Intensivist Coverage: Results of a Nine-Year Cohort Study (2006–2014). PLoS ONE 11(12):e0168548

    Article  Google Scholar 

  29. 29.

    Muhm M, Walendowski M, Danko T, Weiss C, Ruffing T, Winkler H (2015) Factors influencing course of hospitalization in patients with hip fractures: complications, length of stay and hospital mortality. Z Gerontol Geriatr 48(4):339–345

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. W. H. Hartl.

Ethics declarations

Interessenkonflikt

T. Maierhofer, F. Pfisterer, A. Bender, H. Küchenhoff, O. Moerer, H. Burchardi und W.H. Hartl geben an, dass kein Interessenkonflikt besteht.

Für die retrospektive anonymisierte Analyse der Daten bestanden keine Einwände von Seiten der Ethik-Kommissionen der jeweiligen medizinischen Fakultäten.

Additional information

Thomas Maierhofer und Florian Pfisterer haben zu gleichen Teilen zur Arbeit beigetragen.

Redaktion

M. Buerke, Siegen

Caption Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maierhofer, T., Pfisterer, F., Bender, A. et al. Kosten als Instrument zur Effizienzbeurteilung intensivmedizinischer Funktionseinheiten. Med Klin Intensivmed Notfmed 113, 567–573 (2018). https://doi.org/10.1007/s00063-017-0315-8

Download citation

Schlüsselwörter

  • Krankenhausstrukturgesetz
  • Behandlungskosten
  • Kosten-Nutzen-Analyse
  • Intensivtherapie
  • ICD-10

Keywords

  • Hospital Structure Act
  • Treatment costs
  • Cost-utility analysis
  • Intensive care units
  • ICD-10