Skip to main content
Log in

Effect of the laryngeal tube on the no-flow-time in a simulated two rescuer basic life support setting with inexperienced users

Auswirkung des Larynx-Tubus auf die No-Flow-Zeit in einem simulierten zwei-Helfer Basic Life Support Szenario mit unerfahrenen Anwendern

  • Originalien
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Abstract

Introduction

Intubation with a laryngeal tube (LT) is a recommended alternative to endotracheal intubation during advanced life support (ALS). LT insertion is easy; therefore, it may also be an alternative to bag-mask ventilation (BMV) for untrained personnel performing basic life support (BLS). Data from manikin studies support the influence of LT on no-flow-time (NFT) during ALS.

Methods

We performed a prospective, randomized manikin study using a two-rescuer model to compare the effects of ventilation using a LT and BMV on NFT during BLS. Participants were trained in BMV and were inexperienced in the use of a LT.

Results

There was no significant difference in total NFT with the use of a LT and BMV (LT: mean 83.1 ± 37.3 s; BMV: mean 78.7 ± 24.5 s; p = 0.313), but we found significant differences in the progression of the scenario: in the BLS-scenario, the proportion of time spent performing chest compressions was higher when BMV was used compared to when a LT was used. The quality of chest compressions and the ventilation rate did not differ significantly between the two groups. The mean tidal volume and mean minute volume were significantly larger with the use of a LT compared with the use of BMV.

Conclusions

In conclusion, in a two-rescuer BLS scenario, NFT is longer with the use of a LT (without prior training) than with the use of BMV (with prior training). The probable reasons for this result are higher tidal volumes with the use of a LT leading to longer interruptions without chest compressions.

Zusammenfassung

Hintergrund

Der Larynx-Tubus (LT) ist eine empfohlene Alternative zur endotrachealen Intubation im Rahmen von erweiterten Reanimationsmaßnahmen (Advanced Life Support, ALS). Die Insertion des Devices ist einfach, daher ist sein Einsatz auch als Alternative zur Beutel-Masken-Beatmung (Beutel-Masken-Ventilation, BMV) für ungeübtes Personal im Rahmen von Basis-Reanimationsmaßnahmen (Basic Life Support, BLS) denkbar. Daten unterstützen zudem einen positiven Einfluss des LT auf die No-Flow-Time (NFT) beim ALS in Manikin-Studien.

Material und Methoden

Wir untersuchten den Einfluss des LT auf die NFT und die Qualität der Beatmung beim BLS im Vergleich zur BMV im Rahmen einer prospektiven, randomisierten Manikin-Studie im Zwei-Helfer-Modell. Die Probanden waren in BMV ausgebildet, jedoch unerfahren in der Anwendung eines LT.

Ergebnisse

Es zeigte sich kein signifikanter Unterschied in der absoluten NFT (LT: 83,1 ± 37,3 s; BMV: 78,7 ± 24,5 s; p = 0,313). Bei Betrachtung der späteren Zeitabschnitte des Reanimationsverlaufs zeigten sich signifikante Unterschiede: der zeitliche Anteil an Herzdruckmassage stieg unter BMV stetig an, während sich dieser bei Anwendung des LT verringerte. Die Qualität der Herzdruckmassage und die Beatmungsfrequenz unterschieden sich nicht signifikant. Die durchschnittlichen Tidalvolumina sowie Atemminutenvolumina zeigten sich deutlich größer bei Beatmung mit dem LT.

Schlussfolgerungen

Die Anwendung des LT durch ungeübtes Personal im Rahmen des BLS im Zwei-Helfer-Modell führt im Vergleich zur geübten BMV zu einer Verlängerung der NFT. Eine wahrscheinliche Erklärung für dieses Ergebnis sind höhere Tidalvolumina, die zu längeren Unterbrechungen ohne Herzdruckmassage führten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martens E, Sinner MF, Siebermair J, Raufhake C, Beckmann BM, Veith S, Duvel D, Steinbeck G, Kaab S (2014) Incidence of sudden cardiac death in Germany: results from an emergency medical service registry in Lower Saxony. Europace 12:1752–1758

    Article  Google Scholar 

  2. Koster RW, Baubin MA, Bossaert LL, Caballero A, Cassan P, Castren M, Granja C, Handley AJ, Monsieurs KG, Perkins GD, Raffay V, Sandroni C (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation 81:1277–1292

    Article  PubMed  Google Scholar 

  3. Nordberg P, Hollenberg J, Herlitz J, Rosenqvist M, Svensson L (2009) Aspects on the increase in bystander CPR in Sweden and its association with outcome. Resuscitation 80:329–333

    Article  CAS  PubMed  Google Scholar 

  4. Deakin CD, Nolan JP, Soar J, Sunde K, Koster RW, Smith GB, Perkins GD (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation 81:1305–1352

    Article  PubMed  Google Scholar 

  5. Wik L, Kramer-Johansen J, Myklebust H, Sorebo H, Svensson L, Fellows B, Steen PA (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293:299–304

    Article  CAS  PubMed  Google Scholar 

  6. Cheskes S, Schmicker RH, Christenson J, Salcido DD, Rea T, Powell J, Edelson DP, Sell R, May S, Menegazzi JJ, Van Ottingham L, Olsufka M, Pennington S, Simonini J, Berg RA, Stiell I, Idris A, Bigham B, Morrison L (2011) Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation 124:58–66

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berg RA, Kern KB, Sanders AB, Otto CW, Hilwig RW, Ewy GA (1993) Bystander cardiopulmonary resuscitation. Is ventilation necessary? Circulation 88:1907–1915

    Article  CAS  PubMed  Google Scholar 

  8. Hallstrom A, Cobb L, Johnson E, Copass M (2000) Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N Engl J Med 342:1546–1553

    Article  CAS  PubMed  Google Scholar 

  9. Hüpfl M, Selig HF, Nagele P (2010) Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis. Lancet 376:1552–1557

    Article  PubMed  PubMed Central  Google Scholar 

  10. Iwami T, Kawamura T, Hiraide A, Berg RA, Hayashi Y, Nishiuchi T, Kajino K, Yonemoto N, Yukioka H, Sugimoto H, Kakuchi H, Sase K, Yokoyama H, Nonogi H (2007) Effectiveness of bystander-initiated cardiac-only resuscitation for patients with out-of-hospital cardiac arrest. Circulation 116:2900–2907

    Article  PubMed  Google Scholar 

  11. Deakin CD, O’Neill JF, Tabor T (2007) Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest? Resuscitation 75:53–59

    Article  PubMed  Google Scholar 

  12. Handley AJ (2009) Compression-only CPR—to teach or not to teach? Resuscitation 80:752–754

    Article  PubMed  Google Scholar 

  13. Rea TD, Fahrenbruch C, Culley L, Donohoe RT, Hambly C, Innes J, Bloomingdale M, Subido C, Romines S, Eisenberg MS (2010) CPR with chest compression alone or with rescue breathing. N Engl J Med 363:423–433

    Article  CAS  PubMed  Google Scholar 

  14. Svensson L, Bohm K, Castren M, Pettersson H, Engerstrom L, Herlitz J, Rosenqvist M (2010) Compression-only CPR or standard CPR in out-of-hospital cardiac arrest. N Engl J Med 363:434–442

    Article  CAS  PubMed  Google Scholar 

  15. Lee HM, Cho KH, Choi YH, Yoon SY, Choi YH (2008) Can you deliver accurate tidal volume by manual resuscitator? Emerg Med J 25:632–634

    Article  CAS  PubMed  Google Scholar 

  16. Lockey D, Lossius HM (2014) Pre-hospital airway management: the data grows rapidly but controversy remains. Resuscitation 85:849–850

    Article  PubMed  Google Scholar 

  17. Soar J, Nolan JP (2013) Airway management in cardiopulmonary resuscitation. Curr Opin Crit Care 19:181–187

    Article  PubMed  Google Scholar 

  18. Wiese CH, Semmel T, Muller JU, Bahr J, Ocker H, Graf BM (2009) The use of the laryngeal tube disposable (LT-D) by paramedics during out-of-hospital resuscitation-an observational study concerning ERC guidelines 2005. Resuscitation 80:194–198

    Article  CAS  PubMed  Google Scholar 

  19. Schwarzkopf K (2012) Supraglottic airway devices. Med Klin Intensivmed Notfmed 107:531–536

    Article  CAS  PubMed  Google Scholar 

  20. Ostermayer DG, Gausche-Hill M (2014) Supraglottic airways: the history and current state of prehospital airway adjuncts. Prehosp Emerg Care 18:106–115

    Article  PubMed  Google Scholar 

  21. Honold J, Hodrius J, Schwietz T, Bushoven P, Zeiher AM, Fichtlscherer S, Seeger FH (2015) [Aspiration and pneumonia risk after preclinical invasive resuscitation: endotracheal intubation and supraglottic airway management with the laryngeal tube S]. Med Klin Intensivmed Notfmed (in press). doi:10.1007/s00063–015-0018-y

  22. Castle N, Owen R, Hann M, Naidoo R, Reeves D (2010) Assessment of the speed and ease of insertion of three supraglottic airway devices by paramedics: a manikin study. Emerg Med J 27:860–863

    Article  PubMed  Google Scholar 

  23. Jänig C, Nitsche T, Kwiecien R, Dietze T, Lischke H (2012) Atemwegssicherung: Nur etwas für Experten? Notfall Rettungsmed 15:218–224

    Article  Google Scholar 

  24. Huter L, Schwarzkopf K, Rodiger J, Preussler NP, Schreiber T (2009) Students insert the laryngeal tube quicker and more often successful than the esophageal-tracheal combitube in a manikin. Resuscitation 80:930–934

    Article  PubMed  Google Scholar 

  25. Jokela J, Nurmi J, Genzwuerker HV, Castren M (2009) Laryngeal tube and intubating laryngeal mask insertion in a manikin by first-responder trainees after a short video-clip demonstration. Prehosp Disaster Med 24:63–66

    Article  PubMed  Google Scholar 

  26. Lankimaki S, Alahuhta S, Kurola J (2013) Feasibility of a laryngeal tube for airway management during cardiac arrest by first responders. Resuscitation 84:446–449

    Article  CAS  PubMed  Google Scholar 

  27. Asai T, Kawachi S (2004) Use of the laryngeal tube by paramedic staff. Anaesthesia 59(4):408–409

    Article  CAS  PubMed  Google Scholar 

  28. Voscopoulos C, Barker T, Listwa T, Nelson S, Pozner C, Liu X, Zane R, Antoine JA (2013) A comparison of the speed, success rate, and retention of rescue airway devices placed by first-responder emergency medical technicians: a high-fidelity human patient simulation study. J Emerg Med 44:784–789

    Article  PubMed  Google Scholar 

  29. Ruetzler K, Roessler B, Potura L, Priemayr A, Robak O, Schuster E, Frass M (2011) Performance and skill retention of intubation by paramedics using seven different airway devices—a manikin study. Resuscitation 82:593–597

    Article  PubMed  Google Scholar 

  30. Mitchell MS, Lee White M, King WD, Wang HE (2012) Paramedic King Laryngeal Tube airway insertion versus endotracheal intubation in simulated pediatric respiratory arrest. Prehosp Emerg Care 16:284–288

    Article  PubMed  Google Scholar 

  31. Asai T, Hidaka I, Kawachi S (2002) Efficacy of the laryngeal tube by inexperienced personnel. Resuscitation 55:171–175

    Article  PubMed  Google Scholar 

  32. Kurola J, Paakkonen H, Kettunen T, Laakso JP, Gorski J, Silfvast T (2011) Feasibility of written instructions in airway management training of laryngeal tube. Scand J Trauma Resusc Emerg Med 19:56

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wiese CH, Bartels U, Bergmann A, Bergmann I, Bahr J, Graf BM (2008) Using a laryngeal tube during cardiac arrest reduces “no flow time” in a manikin study: a comparison between laryngeal tube and endotracheal tube. Wien Klin Wochenschr 120:217–223

    Article  PubMed  Google Scholar 

  34. Wiese CH, Bahr J, Bergmann A, Bergmann I, Bartels U, Graf BM (2008) [Reduction in no flow time using a laryngeal tube: comparison to bag-mask ventilation]. Anaesthesist 57:589–596

    Article  CAS  PubMed  Google Scholar 

  35. Jensen JL, Walker M, LeRoux Y, Carter A (2013) Chest compression fraction in simulated cardiac arrest management by primary care paramedics: King laryngeal tube airway versus basic airway management. Prehosp Emerg Care 17:285–290

    Article  PubMed  Google Scholar 

  36. Kurola J, Harve H, Kettunen T, Laakso JP, Gorski J, Paakkonen H, Silfvast T (2004) Airway management in cardiac arrest—comparison of the laryngeal tube, tracheal intubation and bag-valve mask ventilation in emergency medical training. Resuscitation 61:149–153

    Article  CAS  PubMed  Google Scholar 

  37. Genzwuerker HV, Finteis T, Slabschi D, Groeschel J, Ellinger K (2001) Assessment of the use of the laryngeal tube for cardiopulmonary resuscitation in a manikin. Resuscitation 51:291–296

    Article  CAS  PubMed  Google Scholar 

  38. Herff H, Bowden K, Paal P, Mitterlechner T, von Goedecke A, Lindner KH, Wenzel V (2009) Effect of decreased inspiratory times on tidal volume. Bench model simulating cardiopulmonary resuscitation. Anaesthesist 58:686–690

    Article  CAS  PubMed  Google Scholar 

  39. Mahony PH, Griffiths RF, Larsen P, Powell D (2008) Retention of knowledge and skills in first aid and resuscitation by airline cabin crew. Resuscitation 76:413–418

    Article  PubMed  Google Scholar 

  40. Schalte G, Stoppe C, Aktas M, Coburn M, Rex S, Schwarz M, Rossaint R, Zoremba N (2011) Laypersons can successfully place supraglottic airways with 3 min of training. A comparison of four different devices in the manikin. Scand J Trauma Resusc Emerg Med 19:60

    Article  PubMed  PubMed Central  Google Scholar 

  41. Trabold B, Schmidt C, Schneider B, Akyol D, Gutsche M (2008) Application of three airway devices during emergency medical training by health care providers—a manikin study. Am J Emerg Med 26:783–788

    Article  PubMed  Google Scholar 

  42. Kette F, Reffo I, Giordani G, Buzzi F, Borean V, Cimarosti R, Codiglia A, Hattinger C, Mongiat A, Tararan S (2005) The use of laryngeal tube by nurses in out-of-hospital emergencies: preliminary experience. Resuscitation 66:21–25

    Article  PubMed  Google Scholar 

  43. Hubble MW, Wilfong DA, Brown LH, Hertelendy A, Benner RW (2010) A meta-analysis of prehospital airway control techniques part II: alternative airway devices and cricothyrotomy success rates. Prehosp Emerg Care 14:515–530

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schröder MD.

Ethics declarations

Conflict of interest

J. Schröder, M. Bucher, and O. Meyer state that there are no conflicts of interest.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975 (in its most recently amended version). Informed consent was obtained from all patients included in the study.

Additional information

Redaktion

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, J., Bucher, M. & Meyer, O. Effect of the laryngeal tube on the no-flow-time in a simulated two rescuer basic life support setting with inexperienced users. Med Klin Intensivmed Notfmed 111, 493–500 (2016). https://doi.org/10.1007/s00063-015-0088-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-015-0088-x

Keywords

Schlüsselwörter

Navigation