Skip to main content
Log in

Nahinfrarotspektroskopie unter kardiopulmonaler Reanimation und mechanischer Kreislaufunterstützung

Vom Operationssaal auf die Intensivstation

Near-infrared spectroscopy during cardiopulmonary resuscitation and mechanical circulatory support

From the operating room to the intensive care unit

  • Innovationen in der Intensivmedizin
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Nahinfrarotspektroskopie (NIRS) ermöglicht die kontinuierliche Messung der zerebralen regionalen Sauerstoffsättigung (rSO2). Man bekommt dabei ein venös gewichtetes Sättigungssignal, da das venöse Kompartiment 70–75 %, das arterielle 20–25 % und das kapilläre 2,5–5 % des mit Sauerstoff beladenen Hämoglobins in der vom Oxymeter untersuchten Gewebeprobe ausmacht. Im Unterschied zur Pulsoxymetrie benötigt die NIRS-Technologie keinen pulsatilen Flow und ist damit auch unter extrakorporaler Zirkulation, kardiopulmonaler Reanimation (CPR) und Hypothermie einsetzbar.

Ziel der Arbeit

Die Darstellung von Anwendungsmöglichkeiten der zerebralen und somatischen NIRS, insbesondere bei kardiologischen und kardiochirurgischen Patienten während und nach einer kardiopulmonalen Reanimation und im Rahmen des Einsatzes von mechanischen Kreislaufunterstützungssystemen ist das Ziel dieser Arbeit.

Material und Methoden

Hintergrund ist die zu diesem Thema publizierte Literatur (Peer-review-Arbeiten aus PubMed).

Ergebnisse

Aus dem herzchirurgischen Bereich weiß man, dass Interventionen aufgrund von NIRS-Entsättigungen Anzahl und Schwere perioperativer Komplikationen verringern können. Wenn im Rahmen einer CRP trotz maximaler Anstrengungen und ausreichender CPR-Dauer niedrige zerebrale rSO2-Werte persistieren, ist dies ein Indikator für die Aussichtslosigkeit der Bemühungen. Während des Einsatzes von mechanischen Kreislaufunterstützungssystemen stellt NIRS eine zusätzliche Monitoringoption dar.

Diskussion

NIRS stellt eine rasche anwenderfreundliche und nichtinvasive Methode zur Überwachung der rSO2 dar. Die Methode bringt v. a. während und nach einer Reanimation sowie unter mechanischer Kreislaufunterstützung zusätzliche Informationen über die regionale, zerebrale und somatische Gewebeoxygenierung. Inwieweit NIRS als Standardmonitoring im Rahmen der CPR und unter mechanischer Kreislaufunterstützung empfohlen werden kann (Reduktion von Pulskontrollen und damit verbunden der Hands-off-Zeiten während CPR, Outcomeverbesserung) müssen erst größere multizentrische Studien zeigen.

Abstract

Background

Near infrared spectroscopy (NIRS) allows continuous measurement of cerebral regional oxygen saturation (rSO2). It is a weighted saturation value derived from approximately 70–75 % venous, 20–25 % arterial and 2.5–5 % capillary blood. In contrast to pulse oximetry, NIRS is independent of pulsatile flow. Therefore, it is also applicable during extracorporeal circulation, cardiopulmonary resuscitation (CPR), and hypothermia.

Objectives

The purpose of this work is to describe the application of cerebral and somatic NIRS in cardiology and cardiac surgery patients in the operation room, during and after CPR, and during the intensive care unit stay.

Materials and methods

This article is based on peer-reviewed literature from PubMed.

Results

Interventions based on decline of cerebral NIRS values during on-pump cardiac surgery can reduce major organ morbidity and mortality; however, the appearance of a postoperative cognitive dysfunction is scarcely influenced. Persisting of low cerebral oximetry values during resuscitation is a marker for not achieving return of spontaneous circulation under normothermia. NIRS is an additional method for monitoring that can be used during extracorporeal circulation.

Conclusion

NIRS is a rapidly available, user-friendly, and noninvasive method for continuous measurement of rSO2. NIRS provides additional information about tissue oxygenation especially during resuscitation and extracorporeal circulatory assist support. Recommendations concerning the use of NIRS for standard monitoring during resuscitation and mechanical circulatory support are not currently available. Further studies are required to show if use of NIRS can reduce pulse control and hands-off times during resuscitation and if use of NIRS can improve outcome after CPR and mechanical circulatory support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Ahn A, Nasir A, Malik H et al (2013) A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation 84:1713–1716

    Article  PubMed  Google Scholar 

  2. Ahn A, Yang J, Inigo-Santiago L et al (2014) A feasibility study of cerebral oximetry monitoring during the post-resuscitation period in comatose patients following cardiac arrest. Resuscitation 85:522–526

    Article  PubMed  Google Scholar 

  3. Argiriadou H, Anastasiadis K, Antonitsis P et al (2010) Use of cerebral oximetry for monitoring cardiac output during off-pump implantation of Jarvik 2000 left ventricular assist device. Artif Organs 34:267–271

    Article  PubMed  Google Scholar 

  4. Bisdas T, Beutel G, Warnecke G et al (2011) Vascular complications in patients undergoing femoral cannulation for extracorporeal membrane oxygenation support. Ann Thorac Surg 92:626–631

    Article  PubMed  Google Scholar 

  5. Bouzat P, Suys T, Sala N et al (2013) Effect of moderate hyperventilation and induced hypertension on cerebral tissue oxygenation after cardiac arrest and therapeutic hypothermia. Resuscitation 84:1540–1545

    Article  PubMed  Google Scholar 

  6. Brazy JE, Lewis DV, Mitnick MH et al (1985) Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations. Pediatrics 75:217–225

    CAS  PubMed  Google Scholar 

  7. Bunch TJ, Mahapatra S, Madhu Reddy Y et al (2012) The role of percutaneous left ventricular assist devices during ventricular tachycardia ablation. Europace 14(Suppl 2):ii26–ii32

    PubMed  Google Scholar 

  8. Cave DM, Gazmuri RJ, Otto CW et al (2010) Part 7: CPR techniques and devices: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122:S720–S728

    Article  PubMed Central  PubMed  Google Scholar 

  9. Davie SN, Grocott HP (2012) Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116:834–840

    Article  CAS  PubMed  Google Scholar 

  10. Denault A, Deschamps A, Murkin JM (2007) A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth 11:274–281

    PubMed  Google Scholar 

  11. Deng MC, Edwards LB, Hertz MI et al (2005) Mechanical circulatory support device database of the International Society for heart and lung transplantation: third annual report – 2005. J Heart Lung Transplant 24:1182–1187

    Article  PubMed  Google Scholar 

  12. Donald MJ, Paterson B (2006) End tidal carbon dioxide monitoring in prehospital and retrieval medicine: a review. Emerg Med J 23:728–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Edmonds HL Jr (2005) Protective effect of neuromonitoring during cardiac surgery. Ann N Y Acad Sci 1053:12–19

    Article  PubMed  Google Scholar 

  14. Field JM, Hazinski MF, Sayre MR et al (2010) Part 1: executive summary: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122:S640–S656

    Article  PubMed  Google Scholar 

  15. Ghosh A, Elwell C, Smith M (2012) Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 115:1373–1383

    Article  CAS  PubMed  Google Scholar 

  16. Gill AS, Rajneesh KF, Owen CM et al (2011) Early optical detection of cerebral edema in vivo. J Neurosurg 114:470–477

    Article  PubMed  Google Scholar 

  17. Goldman S, Sutter F, Ferdinand F et al (2004) Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum 7:E376–E381

    Article  PubMed  Google Scholar 

  18. Hypothermia after Cardiac Arrest Study G (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Article  Google Scholar 

  19. Ito N, Nanto S, Nagao K et al (2012) Regional cerebral oxygen saturation on hospital arrival is a potential novel predictor of neurological outcomes at hospital discharge in patients with out-of-hospital cardiac arrest. Resuscitation 83:46–50

    Article  PubMed  Google Scholar 

  20. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  CAS  PubMed  Google Scholar 

  21. Kamarainen A, Sainio M, Olkkola KT et al (2012) Quality controlled manual chest compressions and cerebral oxygenation during in-hospital cardiac arrest. Resuscitation 83:138–142

    Article  PubMed  Google Scholar 

  22. Lietz K, Brown K, Ali SS et al (2009) The role of cerebral hyperperfusion in postoperative neurologic dysfunction after left ventricular assist device implantation for end-stage heart failure. J Thorac Cardiovasc Surg 137:1012–1019

    Article  PubMed  Google Scholar 

  23. Madsen PL, Nielsen HB, Christiansen P (2000) Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol 20:158–164

    Article  CAS  PubMed  Google Scholar 

  24. Madsen PL, Skak C, Rasmussen A et al (2000) Interference of cerebral near-infrared oximetry in patients with icterus. Anesth Analg 90:489–493

    CAS  PubMed  Google Scholar 

  25. Maekawa K, Tanno K, Hase M et al (2013) Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis. Crit Care Med 41:1186–1196

    Article  PubMed  Google Scholar 

  26. Maldonado Y, Singh S, Taylor MA (2014) Cerebral near-infrared spectroscopy in perioperative management of left ventricular assist device and extracorporeal membrane oxygenation patients. Curr Opin Anaesthesiol 27:81–88

    Article  PubMed  Google Scholar 

  27. Martens PR, Dhaese HL, Van Den Brande FG et al (2010) External cardiac massage improved cerebral tissue oxygenation shown by near-infrared spectroscopy during transcatheter aortic valve implantation. Resuscitation 81:1590–1591

    Article  PubMed  Google Scholar 

  28. Mayr NP, Martin K, Hausleiter J et al (2011) Measuring cerebral oxygenation helps optimizing post-resuscitation therapy. Resuscitation 82:1110–1111

    Article  PubMed  Google Scholar 

  29. Mayr NP, Martin K, Kurz J et al (2011) Monitoring of cerebral oxygen saturation during closed-chest and open-chest CPR. Resuscitation 82:635–636

    Article  PubMed  Google Scholar 

  30. Meex I, De Deyne C, Dens J et al (2013) Feasibility of absolute cerebral tissue oxygen saturation during cardiopulmonary resuscitation. Crit Care 17:R36

    Article  PubMed Central  PubMed  Google Scholar 

  31. Meex I, Dens J, Jans F et al (2013) Cerebral tissue oxygen saturation during therapeutic hypothermia in post-cardiac arrest patients. Resuscitation 84:788–793

    Article  PubMed  Google Scholar 

  32. Mille T, Tachimiri ME, Klersy C et al (2004) Near infrared spectroscopy monitoring during carotid endarterectomy: which threshold value is critical? Eur J Vasc Endovasc Surg 27:646–650

    Article  CAS  PubMed  Google Scholar 

  33. Miller MA, Dukkipati SR, Chinitz JS et al (2013) Percutaneous hemodynamic support with Impella 2.5 during scar-related ventricular tachycardia ablation (PERMIT 1). Circ Arrhythm Electrophysiol 6:151–159

    Article  PubMed  Google Scholar 

  34. Miller MA, Dukkipati SR, Mittnacht AJ et al (2011) Activation and entrainment mapping of hemodynamically unstable ventricular tachycardia using a percutaneous left ventricular assist device. J Am Coll Cardiol 58:1363–1371

    Article  PubMed  Google Scholar 

  35. Morrison LJ, Deakin CD, Morley PT et al (2010) Part 8: advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 122:S345–S421

    Article  PubMed  Google Scholar 

  36. Mosquera VX, Solla-Buceta M, Pradas-Irun C et al (2014) Lower limb overflow syndrome in extracorporeal membrane oxygenation. Interact Cardiovasc Thorac Surg 19:532–534

    Article  PubMed  Google Scholar 

  37. Murkin JM, Arango M (2009) Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103(Suppl 1):i3–i13

    Article  PubMed  Google Scholar 

  38. Murkin JM, Adams SJ, Novick RJ et al (2007) Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 104:51–58

    Article  PubMed  Google Scholar 

  39. Nemoto EM, Yonas H, Kassam A (2000) Clinical experience with cerebral oximetry in stroke and cardiac arrest. Crit Care Med 28:1052–1054

    Article  CAS  PubMed  Google Scholar 

  40. Neumar RW, Otto CW, Link MS et al (2010) Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122:S729–S767

    Article  PubMed  Google Scholar 

  41. Newman DH, Callaway CW, Greenwald IB et al (2004) Cerebral oximetry in out-of-hospital cardiac arrest: standard CPR rarely provides detectable hemoglobin-oxygen saturation to the frontal cortex. Resuscitation 63:189–194

    Article  PubMed  Google Scholar 

  42. Owen-Reece H, Smith M, Elwell CE et al (1999) Near infrared spectroscopy. Br J Anaesth 82:418–426

    Article  CAS  PubMed  Google Scholar 

  43. Paquet C, Deschamps A, Denault AY et al (2008) Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function. J Cardiothorac Vasc Anesth 22:840–846

    Article  PubMed  Google Scholar 

  44. Parnia S, Nasir A, Ahn A et al (2014) A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation*. Crit Care Med 42:930–933

    Article  PubMed  Google Scholar 

  45. Parnia S, Nasir A, Shah C et al (2012) A feasibility study evaluating the role of cerebral oximetry in predicting return of spontaneous circulation in cardiac arrest. Resuscitation 83:982–985

    Article  PubMed  Google Scholar 

  46. Pulido JN, Park SJ, Rihal CS (2010) Percutaneous left ventricular assist devices: clinical uses, future applications, and anesthetic considerations. J Cardiothorac Vasc Anesth 24:478–486

    Article  PubMed  Google Scholar 

  47. Putzer G, Tiefenthaler W, Mair P et al (2012) Near-infrared spectroscopy during cardiopulmonary resuscitation of a hypothermic polytraumatised cardiac arrest patient. Resuscitation 83:e1–e2

    Article  PubMed  Google Scholar 

  48. Quintana-Villamandos B, Rodriguez-Bernal GJ, Perez-Caballero R et al (2012) Severe hypoxaemia with a left ventricular assist device in a minipig model with an undiagnosed congenital cardiac disease. Lab Anim 46:77–80

    Article  CAS  PubMed  Google Scholar 

  49. Robertson CS, Gopinath SP, Chance B (1995) A new application for near-infrared spectroscopy: detection of delayed intracranial hematomas after head injury. J Neurotrauma 12:591–600

    Article  CAS  PubMed  Google Scholar 

  50. Sanchez De Toledo J, Chrysostomou C, Wearden PD (2011) Acute compartment syndrome in a patient on extracorporeal support: utility of near-infrared spectroscopy. J Cardiothorac Vasc Anesth 25:836–837

    Article  PubMed  Google Scholar 

  51. Sasson C, Rogers MA, Dahl J et al (2010) Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 3:63–81

    Article  PubMed  Google Scholar 

  52. Schachner T, Bonaros N, Bonatti J et al (2008) Near infrared spectroscopy for controlling the quality of distal leg perfusion in remote access cardiopulmonary bypass. Eur J Cardiothorac Surg 34:1253–1254

    Article  PubMed  Google Scholar 

  53. Scheeren TW, Schober P, Schwarte LA (2012) Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput 26:279–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Schoen J, Meyerrose J, Paarmann H et al (2011) Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. Crit Care 15:R218

    Article  PubMed Central  PubMed  Google Scholar 

  55. Selnes OA, Gottesman RF, Grega MA et al (2012) Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med 366:250–257

    Article  CAS  PubMed  Google Scholar 

  56. Selnes OA, Grega MA, Bailey MM et al (2009) Do management strategies for coronary artery disease influence 6-year cognitive outcomes? Ann Thorac Surg 88:445–454

    Article  PubMed Central  PubMed  Google Scholar 

  57. Shin TG, Choi JH, Jo IJ et al (2011) Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: a comparison with conventional cardiopulmonary resuscitation. Crit Care Med 39:1–7

    Article  PubMed  Google Scholar 

  58. Sidebotham D, Mcgeorge A, Mcguinness S et al (2010) Extracorporeal membrane oxygenation for treating severe cardiac and respiratory failure in adults: part 2-technical considerations. J Cardiothorac Vasc Anesth 24:164–172

    Article  PubMed  Google Scholar 

  59. Slater JP, Guarino T, Stack J et al (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87:36–44 (discussion 44–45)

    Article  PubMed  Google Scholar 

  60. Smith M (2011) Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy. Philos Trans A Math Phys Eng Sci 369:4452–4469

    Article  CAS  PubMed  Google Scholar 

  61. Sørensen H, Rasmussen P, Siebenmann C, Zaar M, Hvidtfeldt M, Ogoh S, Sato K, Kohl-Bareis M, Secher NH, Lundby C et al (2014) Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between INVOS-4100 and NIRO-200NX. Clin Physiol Funct Imaging. doi: 10.1111/cpf.12142. (Epub ahead of print)

  62. Spires J, Lai N, Zhou H et al (2011) Hemoglobin and myoglobin contributions to skeletal muscle oxygenation in response to exercise. Adv Exp Med Biol 701:347–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sundgreen C, Larsen FS, Herzog TM et al (2001) Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 32:128–132

    Article  CAS  PubMed  Google Scholar 

  64. Swol J, Buchwald D, Ewers A et al (2013) Arteriovenous extracorporeal membrane oxygenation (ECMO). A therapeutic option for fulminant pulmonary embolism. Med Klin Intensivmed Notfmed 108:63–68

    Article  CAS  PubMed  Google Scholar 

  65. Taccone FS, Fagnoul D, Rondelet B et al (2013) Cerebral oximetry during extracorporeal cardiopulmonary resuscitation. Crit Care 17:409

    Article  PubMed Central  PubMed  Google Scholar 

  66. Taccone FS, Vincent JL, De Backer D (2013) Cerebral oximetry to adjust cerebral and systemic circulation after cardiac arrest. Intensive Care Med 39:970–971

    Article  PubMed  Google Scholar 

  67. Tan ST (2008) Cerebral oximetry in cardiac surgery. Hong Kong Med J 14:220–225

    CAS  PubMed  Google Scholar 

  68. Watzman HM, Kurth CD, Montenegro LM et al (2000) Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93:947–953

    Article  CAS  PubMed  Google Scholar 

  69. Wong JK, Smith TN, Pitcher HT et al (2012) Cerebral and lower limb near-infrared spectroscopy in adults on extracorporeal membrane oxygenation. Artif Organs 36:659–667

    Article  PubMed  Google Scholar 

  70. Yoshitani K, Kawaguchi M, Iwata M et al (2005) Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia. Br J Anaesth 94:341–346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Velik-Salchner.

Ethics declarations

Interessenskonflikt

D. Wally und C. Velik-Salchner geben an, dass kein Interessenskonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Tieren oder Menschen.

Additional information

Redaktion:

G. Heinz, Wien

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wally, D., Velik-Salchner, C. Nahinfrarotspektroskopie unter kardiopulmonaler Reanimation und mechanischer Kreislaufunterstützung. Med Klin Intensivmed Notfmed 110, 621–630 (2015). https://doi.org/10.1007/s00063-015-0012-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-015-0012-4

Schlüsselwörter

Keywords

Navigation