Skip to main content
Log in

Adjuvante Therapie der Sepsis

Was ist gesichert?

Adjuvant treatment of sepsis

What is known?

  • Leitthema
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die letzten Jahrzehnte waren von einer großen Zahl durchgeführter Registrierungsstudien für neue Arzneimittel gekennzeichnet, mit denen die Sepsisbehandlung hätte wirksamer werden sollen. Moderne Entzündungshemmung sollte die überwältigende Entzündungs- und Gerinnungsdysregulation korrigieren, die besonders in der frühen Sepsis vorliegt. Ferner sind immunstimulierende Therapien, mit denen die im Verlauf der Sepsis spätere kompensatorische Immunparalyse beeinflusst werden sollte, untersucht worden.

Aktuelle Studienergebnisse

Das ursprünglich nur unter Auflagen zugelassene rekombinante aktivierte Protein C, Drotrecogin-α, wurde wieder vom Markt genommen, weil sich die initial beobachtete Wirksamkeit nicht bestätigen ließ. Antithrombin, dessen Verabreichung entzündungs- und gerinnungsmodulierend wirkt, blieb im generellen Einsatz bei schwerer Sepsis ohne günstige Wirkung auf das Patientenüberleben. Wenn die Sepsis zu disseminierter intravasaler Gerinnung führt, stellt die Antithrombingabe lediglich eine Behandlungsoption dar. Auch hinsichtlich der intravenösen Gabe von Immunglobulinen, der Verabreichung von immunmodulierenden Substanzen in der Ernährung als sog. Immunonutrition sowie der Substitution von Selen blieb die vermutete Wirksamkeit in kleinen heterogenen Studien im Wesentlichen unbestätigt. Mit einer für Schwerkranke nur vorübergehend empfohlenen intensiven Blutzuckerkontrolle wird das Risiko für schädliche Hypoglykämien so stark erhöht, dass die Blutzuckerzielwerte nach der inzwischen ausreichend untersuchten Normalisierungsempfehlung wieder etwas angehoben wurden.

Zusammenfassung und Ausblick

Keines der neuen Medikamente hat sich erfolgreich als neuer allgemeiner Behandlungsstandard etablieren können. Den zahlreichen laufenden Studien zur Sepsis sollte es künftig besser gelingen, die Gruppe heterogener Patienten mit Sepsis so einzuengen, dass sich die in der Präklinik und in kleinen vorbereitenden Studien erfolgreich scheinenden Therapieprinzipien tatsächlich bestätigen und als gesicherte Therapieempfehlungen generalisieren lassen.

Abstract

Background

Recent decades have been characterized by a large number of trials for registration of new drugs or indication approvals in the field of sepsis. Modern anti-inflammatory drugs or interventions are intended to correct the overwhelming dysregulation of inflammatory and coagulation pathways seen particularly in the early phase of sepsis. Immunostimulatory therapies are also being studied in order to correct immunoparalysis, which develops later in the course of sepsis as a compensatory mechanism.

Current study results

Recombinant activated protein C, drotrecogin α, was conditionally approved and later withdrawn from the market by the producer because the initially observed beneficial effect could not be confirmed. The efficacy and safety of antithrombin, which, like drotrecogin α, also modulates inflammation and coagulation as an endogenous anticoagulant could not be confirmed when used for treating sepsis. As sepsis leads to disseminated intravascular coagulation which may be counteracted by antithrombin, new guidelines recommend antithrombin as a treatment option in this subgroup of sepsis patients. Intravenous administration of immunoglobulin, enteral administration of immunomodulating substances as immunonutrition, and the substitution of selenium, all showed some effectiveness in small heterogeneous studies, but their efficacy was not confirmed in large high-quality trials. Intensive glycemic control, which was temporarily recommended for acutely ill patients, increased the risk for adverse hypoglycemia in several clinical trials so that blood glucose target levels have been redefined and guidelines now no longer ask for normalization of blood glucose values with insulin.

Conclusion and outlook

None of the new drugs, however, has successfully become established as a new standard of care. In the future, studies of novel sepsis therapies may succeed better if suitable biomarkers allow for patient selection, reflecting key pathophysiologic mechanisms that are targeted by the innovative drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228

    Article  CAS  PubMed  Google Scholar 

  2. Feistritzer C, Wiedermann CJ (2007) Effects of anticoagulant strategies on activation of inflammation and coagulation. Expert Opin Biol Ther 7:855–870

    Article  CAS  PubMed  Google Scholar 

  3. Angus DC, Poll T van der (2013) Severe sepsis and septic shock. N Engl J Med 369:840–451

    Article  CAS  PubMed  Google Scholar 

  4. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327

    Article  PubMed  Google Scholar 

  5. Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Boomer JS, Green JM, Hotchkiss RS (2014) The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer? Virulence 5:45–56

    Article  PubMed Central  PubMed  Google Scholar 

  7. Warren BL, Eid A, Singer P et al (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286:1869–1878

    Article  CAS  PubMed  Google Scholar 

  8. Levi M, Jonge E de, Poll T van der, ten Cate H (1999) Disseminated intravascular coagulation. Thromb Haemost 82:695–705

    CAS  PubMed  Google Scholar 

  9. Afshari A, Wetterslev J, Brok J, Møller AM (2008) Antithrombin III for critically ill patients. Cochrane Database Syst Rev 3:CD005370

    PubMed  Google Scholar 

  10. Eid A, Wiedermann CJ, Kinasewitz GT (2008) Early administration of high-dose antithrombin in severe sepsis: single center results from the KyberSept-trial. Anesth Analg 107:1633–1638

    Article  CAS  PubMed  Google Scholar 

  11. Wiedermann CJ, Hoffmann JN, Juers M et al (2006) High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: efficacy and safety. Crit Care Med 34:285–292

    Article  CAS  PubMed  Google Scholar 

  12. Kienast J, Juers M, Wiedermann CJ et al (2006) Treatment effects of high-dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. J Thromb Haemost 4:90–97

    Article  CAS  PubMed  Google Scholar 

  13. Hunt BJ (2014) Bleeding and coagulopathies in critical care. N Engl J Med 370:847–859

    Article  CAS  PubMed  Google Scholar 

  14. Wiedermann CJ, Kaneider NC (2006) A systematic review of antithrombin concentrate use in patients with disseminated intravascular coagulation of severe sepsis. Blood Coagul Fibrinolysis 17:521–526

    Article  CAS  PubMed  Google Scholar 

  15. Iba T (2013) Harmonized guidance for disseminated intravascular coagulation from the International Society on Thrombosis and Haemostasis and the current status of anticoagulant therapy in Japan. J Thromb Haemost 11:2076–2078

    Article  CAS  PubMed  Google Scholar 

  16. Gando S, Saitoh D, Ishikura H et al (2013) A randomized, controlled, multicenter trial of the effects of antithrombin on disseminated intravascular coagulation in patients with sepsis. Crit Care 17:R297

    Article  PubMed Central  PubMed  Google Scholar 

  17. Tagami T, Matsui H, Horiguchi H et al (2014) Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost. doi:10.1111/jth.12643

  18. Alejandria MM, Lansang MA, Dans LF, Mantaring JB III (2013) Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev 9:CD001090

    PubMed  Google Scholar 

  19. Kreymann KG, Heer G de, Nierhaus A, Kluge S (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 35:2677–2685

    Article  CAS  PubMed  Google Scholar 

  20. Werdan K, Pilz G, Bujdoso O et al (2007) Score-based immunoglobulin G therapy of patients with sepsis: The SBITS study10. Crit Care Med 35:2693–2701

    Article  CAS  PubMed  Google Scholar 

  21. INIS Collaborative Group, Brocklehurst P, Farrell B, King A et al (2011) Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med 365:1201–1211

    Article  Google Scholar 

  22. Dunzendorfer S, Rothbucher D, Schratzberger P et al (1997) Mevalonate-dependent inhibition of transendothelial migration and chemotaxis of human peripheral blood neutrophils by pravastatin. Circ Res 81:963–969

    Article  CAS  PubMed  Google Scholar 

  23. Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4:977–987

    Article  CAS  PubMed  Google Scholar 

  24. Almog Y, Shefer A, Novack V et al (2004) Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation 110:880–885

    Article  CAS  PubMed  Google Scholar 

  25. Patel JM, Snaith C, Thickett DR et al (2012) Randomized double-blind placebo-controlled trial of 40 mg/day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS Trial). Crit Care 16:R231

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kruger P, Bailey M, Bellomo R et al (2013) A multicenter randomized trial of atorvastatin therapy in intensive care patients with severe sepsis. Am J Respir Crit Care Med 187:743–750

    Article  CAS  PubMed  Google Scholar 

  27. Papazian L, Roch A, Charles PE et al (2013) Effect of statin therapy on mortality in patients with ventilator-associated pneumonia: a randomized clinical trial. JAMA 310:1692–1700

    Article  CAS  PubMed  Google Scholar 

  28. Wan YD, Sun TW, Kan QC et al (2014) Effect of statin therapy on mortality from infection and sepsis: a meta-analysis of randomized and observational studies. Crit Care 18:R71

    Article  PubMed Central  PubMed  Google Scholar 

  29. Inzucchi SE (2006) Clinical practice. Management of hyperglycemia in the hospital setting. N Engl J Med 355:1903–1911

    Article  CAS  PubMed  Google Scholar 

  30. Van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367

    Article  Google Scholar 

  31. Bellomo R, Egi M (2005) Glycemic control in the intensive care unit: why we should wait for NICE-SUGAR. Mayo Clin Proc 80:1546–1548

    Article  PubMed  Google Scholar 

  32. Van den Berghe G, Wilmer A, Hermans G et al (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461

    Article  Google Scholar 

  33. Brunkhorst FM, Engel C, Bloos F et al (2008) German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    Article  CAS  PubMed  Google Scholar 

  34. Annane D, Cariou A, Maxime V et al (2010) Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial. JAMA 303:341–348

    Article  PubMed  Google Scholar 

  35. Arabi YM, Dabbagh OC, Tamim HM et al (2008) Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med 36:3190–3197

    Article  CAS  PubMed  Google Scholar 

  36. De La Rosa Gdel C, Donado JH, Restrepo AH et al (2008) Strict glycemic control in patients hospitalized in a mixed medical and surgical intensive care unit: a randomized clinical trial. Crit Care 12:R120

    Article  Google Scholar 

  37. Preiser JC, Devos P, Ruiz-Santana S et al (2009) A prospective randomized multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med 35:1738–1748

    Article  CAS  PubMed  Google Scholar 

  38. Finfer S, Liu B, Chittock DR et al (2012) Hypoglycemia and risk of death in critically ill patients. N Engl J Med 367:1108–1118

    Article  PubMed  Google Scholar 

  39. Kansagara D, Fu R, Freeman M et al (2011) Intensive insulin therapy in hospitalized patients: a systematic review. Ann Intern Med 154:268–282

    Article  PubMed  Google Scholar 

  40. American Diabetes Association (2012) Standards of medical care in diabetes–2012. Diabetes Care 35(Suppl 1):S11–S63

    Article  Google Scholar 

  41. Heyland D, Muscedere J, Wischmeyer PE et al (2013) A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 368:1489–1497

    Article  CAS  PubMed  Google Scholar 

  42. Van Zanten AR, Sztark F, Kaisers UX et al (2014) High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA 312:514–524

    Article  Google Scholar 

  43. Forceville X, Vitoux D, Gauzit R et al (1998) Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit Care Med 26:1536–1544

    Article  CAS  PubMed  Google Scholar 

  44. Avenell A, Noble DW, Barr J, Engelhardt T (2004) Selenium supplementation for critically ill adults. Cochrane Database Syst Rev 4:CD003703

    PubMed  Google Scholar 

  45. Angstwurm MWA, Engelmann L, Zimmermann T et al (2007) Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med 35:118–126

    Article  CAS  PubMed  Google Scholar 

  46. Valenta J, Brodska H, Drabek T et al (2011) High-dose selenium substitution in sepsis: a prospective randomized clinical trial. Intensive Care Med 37:808–815

    Article  CAS  PubMed  Google Scholar 

  47. Manzanares W, Dhaliwal R, Jiang X et al (2012) Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit Care 16:R66

    Article  PubMed Central  PubMed  Google Scholar 

  48. Sakr Y, Maia VP, Santos C et al (2014) Adjuvant selenium supplementation in the form of sodium selenite in postoperative critically ill patients with severe sepsis. Crit Care 18:R68

    Article  PubMed Central  PubMed  Google Scholar 

  49. Alhazzani W, Jacobi J, Sindi A et al (2013) The effect of selenium therapy on mortality in patients with sepsis syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med 41:1555–1564

    Article  CAS  PubMed  Google Scholar 

  50. Hébert PC, Wells G, Blajchman MA et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340:409–417

    Article  PubMed  Google Scholar 

  51. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  52. Rohde JM, Dimcheff DE, Blumberg N et al (2014) Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA 311:1317–1326

    Article  CAS  PubMed  Google Scholar 

  53. Levi M, Löwenberg EC (2008) Thrombocytopenia in critically ill patients. Semin Thromb Hemost 34:417–424

    Article  PubMed  Google Scholar 

  54. Hunt BJ (2014) Bleeding and coagulopathies in critical care. N Engl J Med 370:847–859

    Article  CAS  PubMed  Google Scholar 

  55. Levi M, Toh CH, Thachil J, Watson HG (2009) Guidelines for the diagnosis and management of disseminated intravascular coagulation. Br J Haematol 145:24–33

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenskonflikt. C.J. Wiedermann gibt an, in den letzten 5 Jahren Honorare für Vorträge und Beratung von den Firmen CSL Behring GmbH, Baxter AG, Schweiz, und der Plasma Protein Therapeutics Association (PPTA) erhalten zu haben.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.J. Wiedermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiedermann, C. Adjuvante Therapie der Sepsis. Med Klin Intensivmed Notfmed 109, 583–590 (2014). https://doi.org/10.1007/s00063-014-0379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-014-0379-7

Schlüsselwörter

Keywords

Navigation