Skip to main content
Log in

Nierenversagen bei Herzinsuffizienz und Hypervolämie

Bedeutung von Stauung und Rückwärtsversagen

Renal dysfunction in heart failure and hypervolumenia

Importance of congestion and backward failure

  • Leitthema
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Traditionell wird eine renale Dysfunktion bei kardialer Insuffizienz (kardiorenales Syndrom Typ 1) auf ein sog. Vorwärtsversagen zurückgeführt. Hierbei induziert eine verminderte kardiale Auswurfleistung bzw. ein erniedrigter mittlerer arterieller Druck eine komplexe neurohumorale Aktivierung, die zu einem erhöhten renalen Gefäßwiderstand und schließlich zu einer renalen Funktionsverminderung führt.

Im letzten Jahrzehnt haben mehrere Studien gezeigt, dass das Ausmaß der renalen Dysfunktion weniger mit Parametern des Vorwärtsversagen (kadialer Index, mittlerer arterieller Druck) korreliert, als vielmehr mit Stauungsindikatoren, wie dem linksventrikulären enddiastolischen Druck oder dem zentralen Venendruck (ZVD), also Parametern eines Rückwärtsversagens. Der Einfluss eines Rückwärtsversagen auf die Nierenfunktion ist jedoch keineswegs, wie häufig nahegelegt, nur auf die Erhöhung des ZVD als renaler Drainagedruck beschränkt, sondern umfasst ein breites Spektrum von Mechanismen: Beteiligt sind die Organsysteme rechtes Herz, Lunge, Leber, der Darm mit seinen proinflammatorischen Signalen, aber auch andere Faktoren, wie das renale interstitielle Ödem (sog. renales Kompartmentsyndrom) oder der intraabdominelle Druck.

Als therapeutische Konsequenz geht es um eine an die individuelle Situation des Patienten orientierte Modulation des „Preloads“, um an verschiedenen Segmenten des Tubulus ansetzende Diuretika inklusive Aldosteron- und ADH-Antagonisten, eine extrakorporale Flüssigkeitselimination mittels Ultrafiltration oder die Peritonealdialyse.

Abstract

Traditionally, renal dysfunction in congestive heart failure (cardiorenal syndrome type 1) has been attributed to reduced cardiac output and low mean arterial perfusion pressure, which elicit a series of neurohumoral activations resulting in increased renal vascular resistance and decreased renal function.

During the last decade, several studies have shown that the extent of renal dysfunction is not so closely associated with indices of forward failure—such as the cardiac index or mean arterial pressure—but rather with indicators of congestion, such as left ventricular enddiasystolic pressure or central venous pressure (CVP), which are indicators of backward failure. The impact of backward failure on renal function is not confined to an elevation of CVP, the renal drainage pressure, but includes a broad spectrum of mechanisms. Involved are the organ systems right heart, lung, the liver, the proinflammatory signals originating from the intestines, but also renal interstitial edema (renal compartment syndrome) and the intraabdominal pressure.

The therapeutic measures must focus on the modulation of the preload adapted to the specific situation of an individual patient. This includes diuretics aiming at different segments of the tubulus system including antagonists of aldosteron and ADH, extracorporeal fluid elimination by ultrafiltration or peritoneal dialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Anand IS, Ferrari R, Kalra GS et al (1989) Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation 80:299–305

    Article  CAS  PubMed  Google Scholar 

  2. Schrier RW, Masoumi A, Elhassan E (2009) Role of vasopressin and vasopressin receptor antagonists in type I cardiorenal syndrome. Blood Purif 27:28–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Schrier RW, Masoumi A, Elhassan E (2010) Aldosterone: role in edematous disorders, hypertension, chronic renal failure, and metabolic syndrome. Clin J Am Soc Nephrol 5:1132–1140

    Article  CAS  PubMed  Google Scholar 

  4. Schrier RW, Fassett RG, Ohara M, Martin PY (1998) Pathophysiology of renal fluid retention. Kidney Int Suppl 67:S127–S132

    Article  CAS  PubMed  Google Scholar 

  5. Marenzi G, Moltrasio M, Assanelli E et al (2007) Impact of cardiac and renal dysfunction on inhospital morbidity and mortality of patients with acute myocardial infarction undergoing primary angioplasty. Am Heart J 153:755–762

    Article  PubMed  Google Scholar 

  6. Cowie MR, Komajda M, Murray-Thomas T et al (2006) Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). Eur Heart J 27:1216–1222

    Article  PubMed  Google Scholar 

  7. Druml W (1998) The heart and kidney. Wien Klin Wochenschr 110:69–71

    CAS  PubMed  Google Scholar 

  8. Kos T, Pacher R, Wimmer A et al (1998) Relationship between kidney function, hemodynamic variables and circulating big endothelin levels in patients with severe refractory heart failure. Wien Klin Wochenschr 110:89–95

    CAS  PubMed  Google Scholar 

  9. Damman K, Valente MA, Voors AA et al (2014) Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J 35:455–469

    Article  PubMed  Google Scholar 

  10. Guglin M, Rivero A, Matar F, Garcia M (2011) Renal dysfunction in heart failure is due to congestion but not low output. Clin Cardiol 34:113–116

    Article  PubMed  Google Scholar 

  11. Prowle JR, Echeverri JE, Ligabo EV et al (2010) Fluid balance and acute kidney injury. Nat Rev Nephrol 6:107–115

    Article  PubMed  Google Scholar 

  12. Prowle JR, Kirwan CJ, Bellomo R (2014) Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 10:37–47

    Article  CAS  PubMed  Google Scholar 

  13. Gnanaraj J, Haehling S von, Anker SD et al (2013) The relevance of congestion in the cardio-renal syndrome. Kidney Int 83:384–391

    Article  CAS  Google Scholar 

  14. Clerico A, Emdin M (2004) Endocrine paradox in heart failure: resistance to biological effects of cardiac natriuretic hormones. Clin Chem 50:2465–2467 (author reply 2467–2468)

    Article  CAS  PubMed  Google Scholar 

  15. Hasking GJ, Esler MD, Jennings GL et al (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621

    Article  CAS  PubMed  Google Scholar 

  16. Frey B, Pacher R, Locker G et al (2000) Prognostic value of hemodynamic vs big endothelin measurements during long-term IV therapy in advanced heart failure patients. Chest 117:1713–1719

    Article  CAS  PubMed  Google Scholar 

  17. Druml W, Steltzer H, Waldhausl W et al (1993) Endothelin-1 in adult respiratory distress syndrome. Am Rev Respir Dis 148:1169–1173

    Article  CAS  PubMed  Google Scholar 

  18. Lueder TG von, Kjekshus H, Edvardsen T et al (2004) Mechanisms of elevated plasma endothelin-1 in CHF: congestion increases pulmonary synthesis and secretion of endothelin-1. Cardiovasc Res 63:41–50

    Article  Google Scholar 

  19. Dupuis J, Rouleau JL, Cernacek P (1998) Reduced pulmonary clearance of endothelin-1 contributes to the increase of circulating levels in heart failure secondary to myocardial infarction. Circulation 98:1684–1687

    Article  CAS  PubMed  Google Scholar 

  20. Mabuchi N, Tsutamoto T, Wada A et al (2002) Relationship between interleukin-6 production in the lungs and pulmonary vascular resistance in patients with congestive heart failure. Chest 121:1195–1202

    Article  CAS  PubMed  Google Scholar 

  21. Jalan R, Forrest EH, Redhead DN et al (1997) Reduction in renal blood flow following acute increase in the portal pressure: evidence for the existence of a hepatorenal reflex in man? Gut 40:664–670

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lang F, Tschernko E, Schulze E et al (1991) Hepatorenal reflex regulating kidney function. Hepatology 14:590–594

    Article  CAS  PubMed  Google Scholar 

  23. Ming Z, Lautt WW (2006) Caffeine-induced natriuresis and diuresis via blockade of hepatic adenosine-mediated sensory nerves and a hepatorenal reflex. Can J Physiol Pharmacol 88:1115–1121

    Article  Google Scholar 

  24. Winton FR (1931) The influence of venous pressure on the isolated mammalian kidney. J Physiol 72:49–61

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Firth JD, Raine AE, Ledingham JG (1988) Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1:1033–1035

    Article  CAS  PubMed  Google Scholar 

  26. Damman K, Deursen VM van, Navis G et al (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53:582–588

    Article  PubMed  Google Scholar 

  27. Mullens W, Abrahams Z, Francis GS et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596

    Article  PubMed Central  PubMed  Google Scholar 

  28. Stone HH, Fulenwider JT (1977) Renal decapsulation in the prevention of post-ischemic oliguria. Ann Surg 186:343–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mason J, Torhorst J, Welsch J (1984) Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure. Kidney Int 26:283–293

    Article  CAS  PubMed  Google Scholar 

  30. Herrler T, Tischer A, Meyer A et al (2010) The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation 89:40–46

    Article  PubMed  Google Scholar 

  31. Verbrugge FH, Dupont M, Steels P et al (2013) Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 62:485–495

    Article  PubMed  Google Scholar 

  32. Silva PL, Guldner A, Uhlig C et al (2013) Effects of intravascular volume replacement on lung and kidney function and damage in nonseptic experimental lung injury. Anesthesiology 118:395–408

    Article  PubMed  Google Scholar 

  33. Sharma R, Bolger AP, Li W et al (2003) Elevated circulating levels of inflammatory cytokines and bacterial endotoxin in adults with congenital heart disease. Am J Cardiol 92:188–193

    Article  CAS  PubMed  Google Scholar 

  34. Sandek A, Bauditz J, Swidsinski A et al (2007) Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 50:1561–1569

    Article  CAS  PubMed  Google Scholar 

  35. Goncalves S, Pecoits-Filho R, Perreto S et al (2006) Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant 21:2788–2794

    Article  CAS  PubMed  Google Scholar 

  36. Payen D, Pont AC de, Sakr Y et al (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ganda A, Onat D, Demmer RT et al (2010) Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr Heart Fail Rep 7:66–74

    Article  CAS  PubMed  Google Scholar 

  38. Matsue Y, Suzuki M, Seya M et al (2013) Tolvaptan reduces the risk of worsening renal function in patients with acute decompensated heart failure in high-risk population. J Cardiol 61:169–174

    Article  PubMed  Google Scholar 

  39. Massie BM, O’Connor CM, Metra M et al (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363:1419–1428

    Article  PubMed  Google Scholar 

  40. Kazory A (2013) Cardiorenal syndrome: ultrafiltration therapy for heart failure – trials and tribulations. Clin J Am Soc Nephrol 8:1816–1828

    Article  PubMed  Google Scholar 

  41. Bart BA, Hernandez AF (2012) Ultrafiltration in heart failure with cardiorenal syndrome. N Engl J Med 368:1159–1160

    Google Scholar 

  42. Kwong JS, Yu CM (2014) Ultrafiltration for acute decompensated heart failure: a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol 172:395–402

    Article  PubMed  Google Scholar 

  43. Marenzi G, Muratori M, Cosentino ER et al (2014) Continuous ultrafiltration for congestive heart failure: the CUORE trial. J Card Fail 20:9–17

    Article  PubMed  Google Scholar 

  44. Courivaud C, Kazory A, Crepin T et al (2014) Peritoneal dialysis reduces the number of hospitalization days in heart failure patients refractory to diuretics. Perit Dial Int 34:100–108

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. W. Druml gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Druml.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druml, W. Nierenversagen bei Herzinsuffizienz und Hypervolämie. Med Klin Intensivmed Notfmed 109, 252–256 (2014). https://doi.org/10.1007/s00063-013-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-013-0323-2

Schlüsselwörter

Keywords

Navigation