Skip to main content
Log in

Septischer Kreislaufschock und septische Kardiomyopathie

Septic shock and septic cardiomyopathy

  • Leitthema
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Beim septischen Schock wird unser Verständnis der hämodynamischen Veränderungen überwiegend von der Störung der Tonusregulation der arteriellen Blutgefäße (Vasodilatation und Vasoplegie) dominiert. Bei vielen Patienten findet sich jedoch auch eine sepsisbedingte Störung der Herzfunktion. Erhöhte Troponinblutspiegel weisen auf die septische Kardiomyopathie hin, wobei die Troponinerhöhungen meist nicht als Ausdruck einer koronaren Minderperfusion anzusehen sind. Neben der Einschränkung der systolischen Pumpleistung ist die septische Kardiomyopathie durch eine Störung von Herzfrequenzregulation und -variabilität (HRV) charakterisiert. Für die Erfassung des Schweregrads der septischen Kardiomyopathie sollte das Herzzeitvolumen im Verhältnis zur jeweiligen Nachlast (SVR) betrachtet werden, z. B. durch den Parameter nachlastbezogene Herzleistung („afterload-related cardiac performance“, ACP). Die Therapie des septischen Schocks und der septischen Kardiomyopathie basiert auf den bekannten kausalen, supportiven und adjunktiven Ansätzen. Für die Stabilisierung der Herzfunktion stehen die adäquate Volumengabe (ggf. mit Erythrozytenkonzentraten) sowie die Gabe von Dobutamin im Vordergrund; spezifische Therapieansätze konnten bislang nicht etabliert werden.

Abstract

Patients suffering from septic shock often present with not only severe reduction of afterload induced by vasodilation but are also affected by sepsis-induced cardiac dysfunction. Elevated troponin levels, which are typically not caused by coronary ischemia, may indicate septic cardiomyopathy which is characterized both by altered systolic function as well as by disturbances in the regulation of heart rate and heart rate variability. The latter findings are based not only on the dysfunction of the autonomous nervous system but are also the result of the direct interaction of endotoxins with cardiac pacemaker cells. In order to quantify the extent of septic cardiomyopathy, cardiac output has to be considered in the light of the existing afterload, i.e., by the parameter ‘afterload-related cardiac performance’ (ACP). Therapy of septic shock (and thereby septic cardiomyopathy) is based on the well-known causative, supportive, and adjunctive strategies. Stabilization of cardiac function is assured by volume resuscitation (including blood transfusion) and inotropic support (dobutamine). Further specific therapeutic approaches have not yet been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Alberti C, Brun-Buisson C, Burchardi H et al (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28:108–121

    Article  PubMed  Google Scholar 

  2. Bouhemad B, Nicolas-Robin A, Arbelot C et al (2009) Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit Care Med 37:441–447

    Article  PubMed  Google Scholar 

  3. Brealey D, Brand M, Hargreaves I et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  PubMed  CAS  Google Scholar 

  4. Brueckmann M, Huhle G, Lang S et al (2005) Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 112:527–534

    Article  PubMed  CAS  Google Scholar 

  5. Brunkhorst FM, Gastmeier P, Kern W et al (2010) Prevention and follow-up care of sepsis. 1st revision of S2 k guidelines of the German Sepsis Society (Deutsche Sepsis-Gesellschaft e.V., DSG) and the German Interdisciplinary Association of Intensive Care and Emergency Medicine (Deutsche Interdisziplinare Vereinigung fur Intensiv- und Notfallmedizin, DIVI)]. Internist (Berl) 51:925–932

  6. Cunnion RE, SchaerGL, Parker MM et al (1986) The coronary circulation in human septic shock. Circulation 73:637–644

    Article  PubMed  CAS  Google Scholar 

  7. De Backer D, Creteur J, PreiserJC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  Google Scholar 

  8. Ebelt H, Werdan K (2010) Sepsis und Herz. Internist (Berl) 51:844–849

  9. Elebute EA, Stoner HB (1983) The grading of sepsis. Br J Surg 70:29–31

    Article  PubMed  CAS  Google Scholar 

  10. Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24:1107–1116

    Article  PubMed  CAS  Google Scholar 

  11. Godin PJ, Fleisher LA, Eidsath A et al (1996) Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit Care Med 24:1117–1124

    Article  PubMed  CAS  Google Scholar 

  12. Wilhelm J, Hettwer S, Schürmann M et al (2011) Afterload-related cardiac performance: a hemodynamic parameter with prognostic relevance in patients with sepsis in the emergency department. Crit Care 15 (Suppl 1):P71

    Article  Google Scholar 

  13. Ince C (2002) The microcirculation unveiled. Am J Respir Crit Care Med 166:1–2

    Article  PubMed  Google Scholar 

  14. Klockner U, Rueckschloss U, Grossmann C et al (2011) Differential reduction of HCN channel activity by various types of lipopolysaccharide. J Mol Cell Cardiol 51:226–235

    Article  PubMed  Google Scholar 

  15. Levy MM, Macias WL, Vincent JL et al (2005) Early changes in organ function predict eventual survival in severe sepsis. Crit Care Med 33:2194–2201

    Article  PubMed  Google Scholar 

  16. Levy Rj, Piel Da, Acton Pd et al (2005) Evidence of myocardial hibernation in the septic heart. Crit Care Med 33:2752–2756

    Article  PubMed  Google Scholar 

  17. Muller-Werdan U, Buerke M, Ebelt H et al (2006) Septic cardiomyopathy – A not yet discovered cardiomyopathy? Exp Clin Cardiol 11:226–236

    PubMed  CAS  Google Scholar 

  18. Natanson C, Eichenholz PW, Danner RL et al (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169:823–832

    Article  PubMed  CAS  Google Scholar 

  19. Parker MM, ShelhamerJH, Bacharach SL et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    PubMed  CAS  Google Scholar 

  20. Parrillo JE, Burch C, ShelhamerJH et al (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    Article  PubMed  CAS  Google Scholar 

  21. Rabuel C, Mebazaa A (2006) Septic shock: a heart story since the 1960s. Intensive Care Med 32:799–807

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt H, Muller-Werdan U, Hoffmann T et al (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002

    Article  PubMed  Google Scholar 

  23. Trzeciak S, MccoyJV, Phillip Dellinger R et al (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34:2210–2217

    Article  PubMed  Google Scholar 

  24. Werdan K, Hettwer S, Bubel S et al (2009) Septic circulatory shock and septic cardiomyopathy. Internist (Berl) 50:799–800, 802–796, 808–799

    Google Scholar 

  25. Werdan K, Oelke A, Hettwer S et al (2011) Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin Res Cardiol 100:661–668

    Article  PubMed  Google Scholar 

  26. Zell R, Geck P, Werdan K et al (1997) TNF-alpha and IL-1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem 177:61–67

    Article  PubMed  CAS  Google Scholar 

  27. Zorn-Pauly K, Pelzmann B, Lang P et al (2007) Endotoxin impairs the human pacemaker current If. Shock 28:655–661

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ebelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebelt, H., Werdan, K. Septischer Kreislaufschock und septische Kardiomyopathie. Med Klin Intensivmed Notfmed 107, 24–28 (2012). https://doi.org/10.1007/s00063-011-0031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-011-0031-8

Schlüsselwörter

Keywords

Navigation