Skip to main content
Log in

Perspektiven regenerativer Mechanismen bei Herz-Kreislauf-Erkrankungen am Beispiel endothelialer Progenitorzellen

Perspectives of Regenerative Mechanisms in Cardiovascular Disease Spotlighting Endothelial Progenitor Cells

  • ÜBERSICHT
  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

Kardiovaskuläre Erkrankungen sind die häufigste Todesursache in der westlichen Welt. Die zugrundeliegende Erkrankung ist in aller Regel die Atherosklerose, die maßgeblich durch eine Schädigung der gefäßauskleidenden Endothelzellschicht gekennzeichnet ist. Die Wiederherstellung eines gesunden Gefäßendothels zur Prävention und Therapie kardiovaskulärer Erkrankungen stellt damit ein wichtiges Konzept im Rahmen der regenerativen Medizin dar.

In dieser Arbeit wird ein Überblick über den derzeitigen Stand der regenerativen Mechanismen bei Herz-Kreislauf-Erkrankungen am Beispiel endothelialer Progenitorzellen gegeben, und die perspektivische Bedeutung der regenerativen Medizin wird am Beispiel der Gefäßgesundheit dargestellt.

Abstract

Cardiovascular diseases are the most common cause of death in the Western world. In general, the underlying disease is atherosclerosis, which is hallmarked by deterioration of the endothelial monolayer. Restoration of an intact endothelial monolayer for prevention and therapy of cardiovascular diseases is one key concept of regenerative medicine.

This article offers a review of state-of-the-art regenerative mechanisms in cardiovascular disease spotlighting endothelial progenitor cells, and further features the perspectives of regenerative medicine in vascular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lusis AJ. Atherosclerosis. Nature 2000;407:233–41.

    Article  PubMed  CAS  Google Scholar 

  2. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–7.

    Article  PubMed  CAS  Google Scholar 

  3. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000;95:952–8.

    PubMed  CAS  Google Scholar 

  4. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002;109:337–46.

    PubMed  CAS  Google Scholar 

  5. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005;353:999–1007.

    Article  PubMed  CAS  Google Scholar 

  6. Sieveking DP, Buckle A, Celermajer DS, et al. Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 2008;51:660–8.

    Article  PubMed  CAS  Google Scholar 

  7. Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004;104:2752–60.

    Article  PubMed  CAS  Google Scholar 

  8. Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000;105:71–7.

    Article  PubMed  CAS  Google Scholar 

  9. Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008; 28:1584–95.

    Article  PubMed  CAS  Google Scholar 

  10. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 2004;24:288–93.

    Article  PubMed  CAS  Google Scholar 

  11. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol 2006;7:333–7.

    Article  PubMed  CAS  Google Scholar 

  12. Cottler-Fox MH, Lapidot T, Petit I,et al. Stem cell mobilization. Hematology Am Soc Hematol Educ Program 2003:419–37.

  13. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood 2005;106:1901–10.

    Article  PubMed  CAS  Google Scholar 

  14. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000;106:1331–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hattori K, Dias S, Heissig B, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001;193:1005–14.

    Article  PubMed  CAS  Google Scholar 

  16. Hattori K, Heissig B, Wu Y, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 2002;8:841–9.

    PubMed  CAS  Google Scholar 

  17. Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1340–6.

    Article  PubMed  CAS  Google Scholar 

  18. Strehlow K, Werner N, Berweiler J, et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation 2003;107:3059–65.

    Article  PubMed  CAS  Google Scholar 

  19. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003;107:1322–8.

    Article  PubMed  CAS  Google Scholar 

  20. Laufs U, Urhausen A, Werner N, et al. Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil 2005;12:407–14.

    Article  PubMed  Google Scholar 

  21. Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004;109:220–6.

    Article  PubMed  CAS  Google Scholar 

  22. Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370–6.

    Article  PubMed  CAS  Google Scholar 

  23. Ozuyaman B, Ebner P, Niesler U, et al. Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thromb Haemost 2005;94:770–2.

    PubMed  Google Scholar 

  24. Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006;12:657–64.

    Article  PubMed  CAS  Google Scholar 

  25. Aicher A, Kollet O, Heeschen C, et al. The Wnt antagonist Dickkopf-1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche. Circ Res 2008;103:796–803.

    Article  PubMed  CAS  Google Scholar 

  26. Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 2001;88:167–74.

    PubMed  CAS  Google Scholar 

  27. Aicher A, Rentsch M, Sasaki K, et al. Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ Res 2007;100:581–9.

    Article  PubMed  CAS  Google Scholar 

  28. Massberg S, Schaerli P, Knezevic-Maramica I, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007;131:994–1008.

    Article  PubMed  CAS  Google Scholar 

  29. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003;348:593–600.

    Article  PubMed  Google Scholar 

  30. Fischer JC, Kudielka BM, Kanel R von, et al. Bone marrow-derived progenitor cells are associated with psychosocial determinants of health after controlling for classical biological and behavioral cardiovascular risk factors. Brain Behav Immun 2009:in press.

  31. Lippincott MF, Desai A, Zalos G, et al. Predictors of endothelial function in employees with sedentary occupations in a worksite exercise program. Am J Cardiol 2008;102:820–4.

    Article  PubMed  Google Scholar 

  32. Umemura T, Soga J, Hidaka T, et al. Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens 2008;21:1203–9.

    Article  PubMed  CAS  Google Scholar 

  33. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001;89:E1–7.

    Article  PubMed  CAS  Google Scholar 

  34. Muller-Ehmsen J, Braun D, Schneider T, et al. Decreased number of circulating progenitor cells in obesity: beneficial effects of weight reduction. Eur Heart J 2008;29:1560–8.

    Article  PubMed  Google Scholar 

  35. Steiner S, Niessner A, Ziegler S, et al. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis 2005;181:305–10.

    Article  PubMed  CAS  Google Scholar 

  36. Werner N, Wassmann S, Ahlers P, et al. Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 2007;102:565–71.

    Article  PubMed  Google Scholar 

  37. Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005;112:Suppl:I178–83.

    PubMed  Google Scholar 

  38. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004;363:751–6.

    Article  PubMed  CAS  Google Scholar 

  39. Inoue T, Sata M, Hikichi Y, et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation: impact on restenosis. Circulation 2007;115:553–61.

    Article  PubMed  Google Scholar 

  40. Aoki J, Serruys PW, Van Beusekom H, et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol 2005;45:1574–9.

    Article  PubMed  CAS  Google Scholar 

  41. Co M, Tay E, Lee CH, et al. Use of endothelial progenitor cell capture stent (Genous Bio-Engineered ® Stent) during primary percutaneous coronary intervention in acute myocardial infarction: intermediate- to long-term clinical follow-up. Am Heart J 2008;155:128–32.

    Article  PubMed  Google Scholar 

  42. Zhou Z, Shi S, Song M, et al. Development of transgenic endothelial progenitor cell-seeded stents. J Biomed Mater Res 2009:in press.

  43. Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000;97:3422–7.

    Article  PubMed  CAS  Google Scholar 

  44. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001;103:634–7.

    PubMed  CAS  Google Scholar 

  45. Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 2004;44:1690–9.

    Article  PubMed  Google Scholar 

  46. Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210–21.

    Article  PubMed  CAS  Google Scholar 

  47. Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 2006;27:2775–83.

    Article  PubMed  Google Scholar 

  48. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141–8.

    Article  PubMed  Google Scholar 

  49. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006;113:1287–94.

    Article  PubMed  Google Scholar 

  50. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199–209.

    Article  PubMed  CAS  Google Scholar 

  51. Seeger FH, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007;28:766–72.

    Article  PubMed  Google Scholar 

  52. Cho HJ, Kim HS, Lee MM, et al. Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation 2003;108:2918–25.

    Article  PubMed  CAS  Google Scholar 

  53. Urao N, Okigaki M, Yamada H, et al. Erythropoietin- mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide funcsynthase activation and prevent neointimal hyperplasia. Circ Res 2006;98:1405–13.

    Article  PubMed  CAS  Google Scholar 

  54. Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002;105:3017–24.

    Article  PubMed  CAS  Google Scholar 

  55. Werner N, Priller J, Laufs U, et al. Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 2002;22:1567–72.

    Article  PubMed  CAS  Google Scholar 

  56. Ince H, Petzsch M, Kleine HD, et al. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation 2005;112:3097–106.

    Article  PubMed  CAS  Google Scholar 

  57. Ellis SG, Penn MS, Bolwell B, et al. Granulocyte colony stimulating factor in patients with large acute myocardial infarction: results of a pilot dose-escalation randomized trial. Am Heart J 2006;152:1051. e9-14.

    Article  PubMed  Google Scholar 

  58. Ripa RS, Jorgensen E, Wang Y, et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006;113:1983–92.

    Article  PubMed  CAS  Google Scholar 

  59. Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006;295:1003–10.

    Article  PubMed  Google Scholar 

  60. Pitchford SC, Furze RC, Jones CP, et al. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 2009;4:62–72.

    Article  PubMed  CAS  Google Scholar 

  61. Bauersachs J, Widder JD. Endothelial dysfunction in heart failure. Pharmacol Rep 2008;60:119–26.

    PubMed  CAS  Google Scholar 

  62. Valgimigli M, Rigolin GM, Fucili A, et al. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 2004;110:1209–12.

    Article  PubMed  CAS  Google Scholar 

  63. Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107:1024–32.

    Article  PubMed  Google Scholar 

  64. Yeh ET, Zhang S, Wu HD, et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 2003;108:2070–3.

    Article  PubMed  Google Scholar 

  65. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004;10:494–501.

    Article  PubMed  CAS  Google Scholar 

  66. Iwasaki H, Kawamoto A, Ishikawa M, et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 2006;113:1311–25.

    Article  PubMed  CAS  Google Scholar 

  67. Assmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006;355:1222–32.

    Article  PubMed  CAS  Google Scholar 

  68. Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 2001;108:399–405.

    PubMed  CAS  Google Scholar 

  69. Wang CH, Ting MK, Verma S, et al. Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus. Am Heart J 2006;152:1051. e1-8.

    Article  Google Scholar 

  70. Wang CH, Verma S, Hsieh IC, et al. Enalapril increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. J Mol Cell Cardiol 2006;41:34–43.

    Article  PubMed  CAS  Google Scholar 

  71. Yao EH, Fukuda N, Matsumoto T, et al. Effects of the antioxidative beta-blocker celiprolol on endothelial progenitor cells in hypertensive rats. Am J Hypertens 2008;21:1062–8.

    Article  PubMed  CAS  Google Scholar 

  72. Hill JM, Syed MA, Arai AE, et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 2005;46:1643–8.

    Article  PubMed  CAS  Google Scholar 

  73. Sharpless NE, Depinho RA. How stem cells age and why this makes us grow old. Nat Rev 2007;8:703–13.

    Article  CAS  Google Scholar 

  74. Beausejour C. Bone marrow-derived cells: the influence of aging and cellular senescence. In: Kauser K, Zeiher A-M, eds. Handbook of experimental pharmacology. Berlin-Heidelberg: Springer, 2007: 67–88.

    Google Scholar 

  75. Wassmann S, Werner N, Czech T, et al. Improvement of endothelial function by systemic transfusion of vascular progenitor cells. Circ Res 2006;99:e74–83.

    Article  PubMed  CAS  Google Scholar 

  76. George J, Afek A, Abashidze A, et al. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2005;25:2636–41.

    Article  PubMed  CAS  Google Scholar 

  77. Boyle AJ, Whitbourn R, Schlicht S, et al. Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up. Int J Cardiol 2006;109:21–7.

    Article  PubMed  Google Scholar 

  78. Yoo KJ, Kim HO, Kwak YL, et al. Autologous bone marrow cell transplantation combined with off-pump coronary artery bypass grafting in patients with ischemic cardiomyopathy. Can J Surg 2008;51:269–75.

    PubMed  Google Scholar 

  79. Hirsch A, Nijveldt R, Van Der Vleuten PA, et al. Intracoronary infusion of autologous mononuclear bone marrow cells in patients with acute myocardial infarction treated with primary PCI: pilot study of the multicenter HEBE trial. Cathet Cardiovasc Interv 2008;71:273–81.

    Article  Google Scholar 

  80. Kim JB, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stem cells. Cell 2009;136:411–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmetz, M., Nickenig, G. & Werner, N. Perspektiven regenerativer Mechanismen bei Herz-Kreislauf-Erkrankungen am Beispiel endothelialer Progenitorzellen. Med Klin 104, 287–295 (2009). https://doi.org/10.1007/s00063-009-1054-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-009-1054-2

Schlüsselwörter:

Key Words:

Navigation