Skip to main content
Log in

Genetik der Schilddrüsenautoimmunität – Update und klinische Relevanz

Genetics of Thyroid Autoimmunity – Update and Clinical Relevance

  • UPDATE
  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

Die autoimmunen Schilddrüsenerkrankungen mit den Hauptvertretern Morbus Basedow und Hashimoto-Thyreoiditis gehören zu den häufigsten Autoimmunerkrankungen überhaupt. Genetische Faktoren spielen eine entscheidende Rolle in der Ätiologie dieser Erkrankungen, und in den letzten Jahren konnten mehrere Risikogene identifiziert werden. Dabei handelt es sich einerseits um immunregulatorische Gene wie Gene der HLA-Klasse II, das CTLA-4-Gen und das PTPN22-Gen und andererseits um schilddrüsenspezifische Gene für den TSH-Rezeptor und das Thyreoglobulin. Obwohl dies zu einem besseren Verständnis der Pathogenese der autoimmunen Schilddrüsenerkrankungen geführt hat, wurde die klinische Relevanz der neuen Erkenntnisse bislang nur unzureichend diskutiert. Deshalb gibt diese Übersicht ein Update der relevanten Risikogene für die Autoimmunität der Schilddrüse und diskutiert ihre Bedeutung für die klinische Arbeit.

Abstract

The autoimmune thyroid diseases with the main phenotypes Graves’ disease and Hashimoto’s thyroiditis belong to the most frequently occurring autoimmune diseases. Genetic factors play a major role in their etiology, and in the past a couple of susceptibility genes have been identified. These are immunoregulatory genes like the HLA class II genes, the CTLA-4 gene and the PTPN22 gene and thyroid-specific genes for the TSH receptor and thyroglobulin. Even though this knowledge contributed to a better understanding of the pathogenesis of the autoimmune thyroid diseases, up to now the clinical relevance has been discussed insufficiently. Hence, this review provides an update of all relevant susceptibility genes for thyroid autoimmunity and discusses their significance for the clinical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Tunbridge WM, Evered DC, Hall R, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf) 1977;7:481–493.

    Article  CAS  Google Scholar 

  2. Davies TF. Graves’ diseases: pathogenesis. In: Braverman LE, Utiger RD, eds. Werner and Ingbar’s the thyroid: a fundamental and clinical text. Philadelphia: Lippincott Williams & Wilkins, 2000:518–530.

    Google Scholar 

  3. Weetman AP. Chronic autoimmune thyroiditis. In: Braverman LE, Utiger RD, eds. Werner & Ingbar’s the thyroid: a fundamental and clinical text. Philadelphia: Lippincott Williams & Wilkins, 2000:721–732.

    Google Scholar 

  4. Tomer Y, Davies TF. Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr Rev 2003;24:694–717.

    Article  PubMed  CAS  Google Scholar 

  5. Prummel MF, Strieder T, Wiersinga WM. The environment and autoimmune thyroid diseases. Eur J Endocrinol 2004;150:605–618.

    Article  PubMed  CAS  Google Scholar 

  6. Martin L. The heredity and familial aspects of exophthalmic goitre and nodular goitre. Q J Med 1945;14:207–219.

    Google Scholar 

  7. Hall R, Stanbury JB. Familial studies of autoimmune thyroiditis. Clin Exp Immunol 1967;2:719–725.

    PubMed  Google Scholar 

  8. Brenzel T, Libich C, Victor A, et al. High recurrence risk in kindred of patients with autoimmune thyroid diseases. Thyroid 2007;17:Supp 1:S–48.

    Google Scholar 

  9. Brix TH, Christensen K, Holm NV, et al. A population based study of Graves’ diseases in Danish twins. Clin Endocrinol (Oxf) 1998;48:397–400.

    Article  CAS  Google Scholar 

  10. Brix TH, Kyvik KO, Christensen K, et al. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab 2001;86:930–934.

    Article  PubMed  CAS  Google Scholar 

  11. Ringold DA, Nicoloff JT, Kesler M, et al. Further evidence for a strong genetic influence on the development of autoimmune thyroid disease: the California twin study. Thyroid 2002;12:647–653.

    Article  PubMed  Google Scholar 

  12. Brix TH, Kyvik KO, Hegedus L. A population-based study of chronic autoimmune hypothyroidism in Danish twins. J Clin Endocrinol Metab 2000;85:536–539.

    Article  PubMed  CAS  Google Scholar 

  13. Dittmar M, Kahaly GJ. Immunoregulatory and susceptibility genes in thyroid and polyglandular autoimmunity. Thyroid 2005;15:239–250.

    Article  PubMed  CAS  Google Scholar 

  14. Jacobson EM, Tomer Y. The genetic basis of thyroid autoimmunity. Thyroid 2007;17:949–961.

    Article  PubMed  CAS  Google Scholar 

  15. Eisenbarth GS, Gottlieb PA. Autoimmune polyendocrine syndromes. N Engl J Med 2004;350:2068–2079.

    Article  PubMed  CAS  Google Scholar 

  16. Dittmar M, Kahaly GJ. Polyglandular autoimmune syndromes: immunogenetics and long-term follow-up. J Clin Endocrinol Metab 2003;88:2983–2992.

    Article  PubMed  CAS  Google Scholar 

  17. Kahaly GJ, Dittmar M. Autoimmune polyglandular syndrome type 2. In: Weetman AP, ed. Autoimmune diseases in endocrinology. Totowa: Humana Press, 2007:377–391.

    Google Scholar 

  18. Kahaly GJ. Autoimmune polyglandular syndromes. Hot Thyroidology 2007:1 ( http://www.hotthyroidology.com ).

  19. Farid NR, Barnard JM, Marshall WH. The association of HLA with autoimmune thyroid disease in Newfoundland. The influence of HLA homozygosity in Graves’ disease. Tissue Antigens 1976;8:181–189.

    PubMed  CAS  Google Scholar 

  20. Mather BA, Roberts DF, Scanlon MF, et al. HLA antigens and thyroid autoantibodies in patients with Graves’ disease and their first degree relatives. Clin Endocrinol (Oxf) 1980;12:155–163.

    Article  CAS  Google Scholar 

  21. Farid NR, Stone E, Johnson G. Graves’ disease and HLA: clinical and epidemiologic associations. Clin Endocrinol (Oxf) 1980;13:535–544.

    Article  CAS  Google Scholar 

  22. Bech K, Lumholtz B, Nerup J, et al. HLA antigens in Graves’ disease. Acta Endocrinol (Copenh) 1977;86:510–516.

    PubMed  CAS  Google Scholar 

  23. Farid NR, Sampson L, Noel EP, et al. A study of human leukocyte D locus related antigens in Graves’ disease. J Clin Invest 1979;63:108–113.

    Article  PubMed  CAS  Google Scholar 

  24. Heward JM, Allahabadia A, Daykin J, et al. Linkage disequilibrium between the human leukocyte antigen II region of the major histocompatibility complex and Graves’ disease: replication using a population case control and family-based study. J Clin Endocrinol Metab 1998;83:3394–3397.

    Article  PubMed  CAS  Google Scholar 

  25. Allanic H, Fauchet R, Lorcy Y, et al. Graves’ disease. Predominance of the DRw3 antigen (author’s translation). Nouv Presse Med 1980;9:1823–1826.

    PubMed  CAS  Google Scholar 

  26. Dahlberg PA, Holmlund G, Karlsson FA, et al. HLA-A, -B, -C and -DR antigens in patients with Graves’ disease and their correlation with signs and clinical course. Acta Endocrinol (Copenh) 1981;97:42–47.

    CAS  Google Scholar 

  27. Boehm BO, Kühnl P, Manfras BJ, et al. HLA-DRB3 gene alleles in Caucasian patients with Graves’ disease. Clin Investig 1992;70:956–960.

    Article  PubMed  CAS  Google Scholar 

  28. Yanagawa T, Mangklabruks A, Chang YB, et al. Human histocompatibility leukocyte antigen-DQA1⋆0501 allele associated with genetic susceptibility to Graves’ disease in a Caucasian population. J Clin Endocrinol Metab 1993;76:1569–1574.

    Article  PubMed  CAS  Google Scholar 

  29. Marga M, Denisova A, Sochnev A, et al. Two HLA DRB 1 alleles confer independent genetic susceptibility to Graves disease: relevance of cross-population studies. Am J Med Genet 2001;102:188–191.

    Article  PubMed  CAS  Google Scholar 

  30. Zamani M, Spaepen M, Bex M, et al. Primary role of the HLA class II DRB1⋆0301 allele in Graves disease. Am J Med Genet 2000;95:432–437.

    Article  PubMed  CAS  Google Scholar 

  31. Ban Y, Davies TF, Greenberg DA, et al. Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves’ disease. Genes Immun 2004;5:203–208.

    Article  PubMed  CAS  Google Scholar 

  32. Hunt PJ, Marshall SE, Weetman AP, et al. Histocompatibility leucocyte antigens and closely linked immunomodulatory genes in autoimmune thyroid disease. Clin Endocrinol (Oxf) 2001;55:491–499.

    Article  CAS  Google Scholar 

  33. Tandon N, Zhang L, Weetman AP. HLA associations with Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 1991;34:383–386.

    Article  CAS  Google Scholar 

  34. Petrone A, Giorgi G, Mesturino CA, et al. Association of DRB1⋆04-DQB1⋆0301 haplotype and lack of association of two polymorphic sites at CTLA-4 gene with Hashimoto’s thyroiditis in an Italian population. Thyroid 2001;11:171–175.

    Article  PubMed  CAS  Google Scholar 

  35. Farid NR, Sampson L, Moens H, et al. The association of goitrous autoimmune thyroiditis with HLA-DR5. Tissue Antigens 1981;17:265–268.

    Article  PubMed  CAS  Google Scholar 

  36. Jenkins D, Penny MA, Fletcher JA, et al. HLA class II gene polymorphism contributes little to Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 1992;37:141–145.

    Article  CAS  Google Scholar 

  37. Dittmar M, Ide M, Wurm M, et al. Early onset of polyglandular failure is associated with HLADRB1⋆03. Eur J Endocrinol 2008;159:55–60.

    Article  PubMed  CAS  Google Scholar 

  38. Golden B, Levin L, Ban Y, et al. Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J Clin Endocrinol Metab 2005;90:4904–4911.

    Article  PubMed  CAS  Google Scholar 

  39. Nelson JL, Hansen JA. Autoimmune disease and HLA. Crit Rev Immunol 1990;10:307–328.

    PubMed  CAS  Google Scholar 

  40. Faas S, Trucco M. The genes influencing the susceptibility to IDDM in humans. J Endocrinol Invest 1994;17:477–495.

    PubMed  CAS  Google Scholar 

  41. Ostrov DA, Shi W, Schwartz JC, et al. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science 2000;290:816–819.

    Article  PubMed  CAS  Google Scholar 

  42. Krummel MF, Sullivan TJ, Allison JP. Superantigen responses and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. Int Immunol 1996;8:519–523.

    Article  PubMed  CAS  Google Scholar 

  43. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405–413.

    Article  PubMed  CAS  Google Scholar 

  44. Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3:541–547.

    Article  PubMed  CAS  Google Scholar 

  45. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995;270:985–988.

    Article  PubMed  CAS  Google Scholar 

  46. Rudd CE. The reverse stop-signal model for CTLA4 function. Nat Rev Immunol 2008;8:153–160.

    Article  PubMed  CAS  Google Scholar 

  47. Yanagawa T, Hidaka Y, Guimaraes V, et al. CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab 1995;80:41–45.

    Article  PubMed  CAS  Google Scholar 

  48. Kotsa K, Watson PF, Weetman AP. A CTLA-4 gene polymorphism is associated with both Graves disease and autoimmune hypothyroidism. Clin Endocrinol (Oxf) 1997;46:551–554.

    Article  CAS  Google Scholar 

  49. Donner H, Rau H, Walfish PG, et al. CTLA4 alanine-17 confers genetic susceptibility to Graves’ disease and to type 1 diabetes mellitus. J Clin Endocrinol Metab 1997;82:143–146.

    Article  PubMed  CAS  Google Scholar 

  50. Nithiyananthan R, Heward JM, Allahabadia A, et al. Polymorphism of the CTLA-4 gene is associated with autoimmune hypothyroidism in the United Kingdom. Thyroid 2002;12:3–6.

    Article  PubMed  CAS  Google Scholar 

  51. Yanagawa T, Taniyama M, Enomoto S, et al. CTLA4 gene polymorphism confers susceptibility to Graves’ disease in Japanese. Thyroid 1997;7:843–846.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang Q, Yang YM, Lv XY. Association of Graves’ disease and Graves’ ophthalmopathy with the polymorphisms in promoter and exon 1 of cytotoxic T lymphocyte associated antigen-4 gene. J Zhejiang Univ Sci B 2006;7:887–891.

    Article  PubMed  CAS  Google Scholar 

  53. Kavvoura FK, Akamizu T, Awata T, et al. Cytotoxic T-lymphocyte associated antigen 4 gene polymorphisms and autoimmune thyroid disease: a meta-analysis. J Clin Endocrinol Metab 2007;92:3162–3170.

    Article  PubMed  CAS  Google Scholar 

  54. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506–511.

    Article  PubMed  CAS  Google Scholar 

  55. Takara M, Kouki T, DeGroot LJ. CTLA-4 AT-repeat polymorphism reduces the inhibitory function of CTLA-4 in Graves’ disease. Thyroid 2003;13:1083–1089.

    Article  PubMed  CAS  Google Scholar 

  56. Wang XB, Kakoulidou M, Giscombe R, et al. Abnormal expression of CTLA-4 by T cells from patients with myasthenia gravis: effect of an AT-rich gene sequence. J Neuroimmunol 2002;130:224–232.

    Article  PubMed  CAS  Google Scholar 

  57. Kouki T, Sawai Y, Gardine CA, et al. CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J Immunol 2000;165:6606–6611.

    PubMed  CAS  Google Scholar 

  58. Ban Y, Davies TF, Greenberg DA, et al. Analysis of the CTLA-4, CD28 and inducible co-stimulator (ICOS) genes in autoimmune thyroid disease. Genes Immun 2003;4:586–593.

    Article  PubMed  CAS  Google Scholar 

  59. Xu Y, Graves PN, Tomer Y, et al. CTLA-4 and autoimmune thyroid disease: lack of influence of the A49G signal peptide polymorphism on functional recombinant human CTLA-4. Cell Immunol 2002;215:133–140.

    Article  PubMed  CAS  Google Scholar 

  60. Mayans S, Lackovic K, Nyholm C, et al. CT60 genotype does not affect CTLA-4 isoform expression despite association to T1D and AITD in northern Sweden. BMC Med Genet 2007;8:3.

    Article  PubMed  CAS  Google Scholar 

  61. Cloutier JF, Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 1999;189:111–121.

    Article  PubMed  CAS  Google Scholar 

  62. Gjörloff-Wingren A, Saxena M, Williams S, et al. Characterization of TCR induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol 1999;29:3845–3854.

    Article  PubMed  Google Scholar 

  63. Cohen S, Dadi H, Shaoul E, et al. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 1999;93:2013–2024.

    PubMed  CAS  Google Scholar 

  64. Begovich AB, Carlton VE, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004;75:330–337.

    Article  PubMed  CAS  Google Scholar 

  65. Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004;75:504–507.

    Article  PubMed  CAS  Google Scholar 

  66. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36:337–338.

    Article  PubMed  CAS  Google Scholar 

  67. Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004;53:3020–3023.

    Article  PubMed  CAS  Google Scholar 

  68. Velaga MR, Wilson V, Jennings CE, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab 2004;89:5862–5965.

    Article  PubMed  CAS  Google Scholar 

  69. Criswell LA, Pfeiffer KA, Lum RF, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005;76:561–571.

    Article  PubMed  CAS  Google Scholar 

  70. Lee YH, Rho YH, Choi SJ, et al. The PTPN22 C1858T functional polymorphism and autoimmune diseases — a meta analysis. Rheumatology (Oxf) 2007;46:49–56.

    Article  CAS  Google Scholar 

  71. Kahles H, Ramos-Lopez E, Lange B, et al. Sex-specific association of the PTPN22 1858T with type 1 diabetes but not with Hashimoto’s thyroiditis or Addison’s disease in the German population. Eur J Endocrinol 2005;153:895–899.

    Article  PubMed  CAS  Google Scholar 

  72. Dultz G, Matheis N, Dittmar M, et al. The protein tyrosine phosphatase non-receptor type 22 C1858T polymorphism is a joint susceptibility locus for immunthyroiditis and autoimmune diabetes. Thyroid 2009;19:143–148.

    Article  PubMed  CAS  Google Scholar 

  73. Vang T, Congia M, Macis MD, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005;37:1317–1319.

    Article  PubMed  CAS  Google Scholar 

  74. Banchereau J, Bazan F, Blanchard D, et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994;12:881–922.

    Article  PubMed  CAS  Google Scholar 

  75. Hollenbaugh D, Grosmaire LS, Kullas CD, et al. The human T-cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B-cell co-stimulatory activity. EMBO J 1992;11:4313–4321.

    PubMed  CAS  Google Scholar 

  76. Armitage RJ, Fanslow WC, Strockbine L, et al. Molecular and biological characterization of a murine ligand for CD40. Nature 1992;357:80–82.

    Article  PubMed  CAS  Google Scholar 

  77. Armitage RJ, Macduff BM, Spriggs MK, et al. Human B cell proliferation and Ig secretion induced by recombinant CD40 ligand are modulated by soluble cytokines. J Immunol 1993;150:3671–3680.

    PubMed  CAS  Google Scholar 

  78. Arpin C, Déchanet J, van Kooten C, et al. Generation of memory B cells and plasma cells in vitro. Science 1995;268:720–722.

    Article  PubMed  CAS  Google Scholar 

  79. Jabara HH, Fu SM, Geha RS, et al. CD40 and IgE: synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B-cells. J Exp Med 1990;172:1861–1864.

    Article  PubMed  CAS  Google Scholar 

  80. Lougaris V, Badolato R, Ferrari S, et al. Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev 2005;203:48–66.

    Article  PubMed  CAS  Google Scholar 

  81. Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A 2001;98:12614–12619.

    Article  PubMed  CAS  Google Scholar 

  82. Im SH, Barchan D, Maiti PK, et al. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4. J Immunol 2001;166:6893–6898.

    PubMed  CAS  Google Scholar 

  83. Chen CR, Aliesky HA, Guo J, et al. Blockade of costimulation between T cells and antigenpresenting cells: an approach to suppress murine Graves’ disease induced using thyrotropin receptor-expressing adenovirus. Thyroid 2006;16:427–434.

    Article  PubMed  CAS  Google Scholar 

  84. Tomer Y, Barbesino G, Greenberg DA, et al. A new Graves disease-susceptibility locus maps to chromosome 20q11.2. Am J Hum Genet 1998;63:1749–1756.

    Article  PubMed  CAS  Google Scholar 

  85. Pearce SH, Vaidya B, Imrie H, et al. Further evidence for a susceptibility locus on chromosome 20q13.11 in families with dominant transmission of Graves disease. Am J Hum Genet 1999;65:1462–1465.

    Article  PubMed  CAS  Google Scholar 

  86. Tomer Y, Concepcion E, Greenberg DA. A C/T single nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 2002;12:1129–1135.

    Article  PubMed  CAS  Google Scholar 

  87. Kurylowicz A, Kula D, Ploski R, et al. Association of CD40 gene polymorphism (C-1T) with susceptibility and phenotype of Graves’ disease. Thyroid 2005;15:1119–1124.

    Article  PubMed  CAS  Google Scholar 

  88. Kozak M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 1987;15:8125–8148.

    Article  PubMed  CAS  Google Scholar 

  89. Jacobson EM, Concepcion E, Oashi T, et al. A Graves’ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 2005;146:2684–2691.

    Article  PubMed  CAS  Google Scholar 

  90. Metcalfe RA, McIntosh RS, Marelli-Berg F, et al. Detection of CD40 on human thyroid follicular cells: analysis of expression and function. J Clin Endocrinol Metab 1998;83:1268–1274.

    Article  PubMed  CAS  Google Scholar 

  91. Smith TJ, Sciaky D, Phipps RP, et al. CD40 expression in human thyroid tissue: evidence for involvement of multiple cell types in autoimmune and neoplastic diseases. Thyroid 1999;9:749–755.

    Article  PubMed  CAS  Google Scholar 

  92. Shulman S. Thyroid antigens and autoimmunity. Adv Immunol 1971;14:85–185.

    Article  PubMed  CAS  Google Scholar 

  93. Stafford EA, Rose NR. Newer insights into the pathogenesis of experimental autoimmune thyroiditis. Int Rev Immunol 2000;19:501–533.

    Article  PubMed  CAS  Google Scholar 

  94. Charreire J. Immune mechanisms in autoimmune thyroiditis. Adv Immunol 1989;46:263–334.

    Article  PubMed  CAS  Google Scholar 

  95. Alimi E, Huang S, Brazillet MP, et al. Experimental autoimmune thyroiditis (EAT) in mice lacking the IFN-gamma receptor gene. Eur J Immunol 1998;28:201–208.

    Article  PubMed  CAS  Google Scholar 

  96. Tomer Y, Ban Y, Concepcion E, et al. Common and unique susceptibility loci in Graves and Hashimoto diseases: results of whole genome screening in a data set of 102 multiplex families. Am J Hum Genet 2003;73:736–747.

    Article  PubMed  CAS  Google Scholar 

  97. Sakai K, Shirasawa S, Ishikawa N, et al. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23–q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet 2001;10:1379–1386.

    Article  PubMed  CAS  Google Scholar 

  98. Ban Y, Greenberg DA, Concepcion E, et al. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci U S A 2003;100:15119–15124.

    Article  PubMed  CAS  Google Scholar 

  99. Hodge SE, Ban Y, Strug LJ, et al. Possible interaction between HLA-DRbeta1 and thyroglobulin variants in Graves’ disease. Thyroid 2006;16:351–355.

    Article  PubMed  CAS  Google Scholar 

  100. Collins JE, Heward JM, Howson JM, et al. Common allelic variants of exons 10, 12, and 33 of the thyroglobulin gene are not associated with autoimmune thyroid disease in the United Kingdom. J Clin Endocrinol Metab 2004;89:6336–6339.

    Article  PubMed  CAS  Google Scholar 

  101. Tonacchera M, Pinchera A. Thyrotropin receptor polymorphisms and thyroid diseases. J Clin Endocrinol Metab 2000;85:2637–2639.

    Article  PubMed  CAS  Google Scholar 

  102. Cuddihy RM, Dutton CM, Bahn RS. A polymorphism in the extracellular domain of the thyrotropin receptor is highly associated with autoimmune thyroid disease in females. Thyroid 1995;5:89–95.

    Article  PubMed  CAS  Google Scholar 

  103. Allahabadia A, Heward JM, Mijovic C, et al. Lack of association between polymorphism of the thyrotropin receptor gene and Graves’ disease in United Kingdom and Hong Kong Chinese patients: case control and family-based studies. Thyroid 1998;8:777–780.

    Article  PubMed  CAS  Google Scholar 

  104. Kotsa KD, Watson PF, Weetman AP. No association between a thyrotropin receptor gene polymorphism and Graves’ disease in the female population. Thyroid 1997;7:31–33.

    Article  PubMed  CAS  Google Scholar 

  105. Simanainen J, Kinch A, Westermark K, et al. Analysis of mutations in exon 1 of the human thyrotropin receptor gene: high frequency of the D36H and P52T polymorphic variants. Thyroid 1999;9:7–11.

    Article  PubMed  CAS  Google Scholar 

  106. Kaczur V, Takács M, Szalai C, et al. Analysis of the genetic variability of the 1st (CCC/ACC, P52T) and the 10th exons (bp 1012-1704) of the TSH receptor gene in Graves’ disease. Eur J Immunogenet 2000;27:17–23.

    Article  PubMed  CAS  Google Scholar 

  107. Chistyakov DA, Savost’anov KV, Turakulov RI, et al. Complex association analysis of graves disease using a set of polymorphic markers. Mol Genet Metab 2000;70:214–218.

    Article  PubMed  CAS  Google Scholar 

  108. Akamizu T, Sale MM, Rich SS, et al. Association of autoimmune thyroid disease with microsatellite markers for the thyrotropin receptor gene and CTLA-4 in Japanese patients. Thyroid 2000;10:851–858.

    Article  PubMed  CAS  Google Scholar 

  109. Sale MM, Akamizu T, Howard TD, et al. Association of autoimmune thyroid disease with a microsatellite marker for the thyrotropin receptor gene and CTLA-4 in a Japanese population. Proc Assoc Am Physicians 1997;109:453–461.

    PubMed  CAS  Google Scholar 

  110. Hiratani H, Bowden DW, Ikegami S, et al. Multiple SNPs in intron 7 of thyrotropin receptor are associated with Graves’ disease. J Clin Endocrinol Metab 2005;90:2898–903.

    Article  PubMed  CAS  Google Scholar 

  111. Dechairo BM, Zabaneh D, Collins J, et al. Association of the TSHR gene with Graves’ disease: the first disease specific locus. Eur J Hum Genet 2005;13:1223–1230.

    Article  PubMed  CAS  Google Scholar 

  112. Fournier C, Gepner P, Sadouk M, et al. In vivo beneficial effects of cyclosporin A and 1,25-dihydroxyvitamin D3 on the induction of experimental autoimmune thyroiditis. Clin Immunol Immunopathol 1990;54:53–63.

    Article  PubMed  CAS  Google Scholar 

  113. Czernobilsky H, Scharla S, Schmidt-Gayk H, et al. Enhanced suppression of 1,25(OH)2D3 and intact parathyroid hormone in Graves’ disease as compared to toxic nodular goiter. Calcif Tissue Int 1988;42:5–12.

    Article  PubMed  CAS  Google Scholar 

  114. Tokuda N, Mano T, Levy RB. 1,25-Dihydroxyvitamin D3 antagonizes interferon-gamma-induced expression of class II major histocompatibility antigens on thyroid follicular and testicular Leydig cells. Endocrinology 1990;127:1419–1427.

    Article  PubMed  CAS  Google Scholar 

  115. Lemire JM. Immunmodulatory role of 1,25-dihydroxyvitamin D3. J Cell Biochem 1992;49:26–31.

    Article  PubMed  CAS  Google Scholar 

  116. Speeckaert M, Huang G, Delanghe JR, et al. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta 2006;372:33–42.

    Article  PubMed  CAS  Google Scholar 

  117. Pani MA, Regulla K, Segni M, et al. A polymorphism within the vitamin D-binding protein gene is associated with Graves’ disease but not with Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2002;87:2564–2567.

    Article  PubMed  CAS  Google Scholar 

  118. Kurylowicz A, Ramos-Lopez E, Bednarczuk T, et al. Vitamin D-binding protein (DBP) gene polymorphism is associated with Graves’ disease and the vitamin D status in Polish polpulation study. Exp Clin Endocrinol Diabetes 2006;114:329–335.

    Article  PubMed  CAS  Google Scholar 

  119. Betterle C, Greggio NA, Volpato M. Clinical review 93: Autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab 1988;83:1049–1055.

    Article  Google Scholar 

  120. Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet 1997;17:393–398.

    Article  PubMed  CAS  Google Scholar 

  121. Kogawa K, Nagafuchi S, Katsuta H, et al. Expression of AIRE gene in peripheral monocyte/dendritic cell lineage. Immunol Lett 2002;80:195–198.

    Article  PubMed  CAS  Google Scholar 

  122. Murumagi A, Vahamurto P, Peterson P. Characterization of regulatory elements and methylation pattern of the autoimmune regulator (AIRE) promoter. J Biol Chem 2003;278:19784–19790.

    Article  PubMed  Google Scholar 

  123. Halonen M, Kangas H, Rüppell T, et al. APECED-causing mutations in AIRE reveal the functional domains of the protein. Hum Mutat 2004;23:245–257.

    Article  PubMed  CAS  Google Scholar 

  124. Halonen M, Eskelin P, Myhre AG, et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J Clin Endocrinol Metab 2002;87:2568–2574.

    Article  PubMed  CAS  Google Scholar 

  125. Heino M, Peterson P, Kudoh J, et al. APECED mutations in the autoimmune regulator (AIRE) gene. Hum Mutat 2001; 18:205–211.

    Article  PubMed  CAS  Google Scholar 

  126. Pearce SH, Cheetham T, Imrie H, et al. A common and recurrent 13-bp deletion in the autoimmune regulator gene in British kindreds with autoimmune polyendocrinopathy type 1. Am J Hum Genet 1998; 63:1675–1684.

    Article  PubMed  CAS  Google Scholar 

  127. Björses P, Halonen M, Palvimo JJ, et al. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am J Hum Genet 2000;66:378–392.

    Article  PubMed  Google Scholar 

  128. Meyer G, Donner H, Herwig J, et al. Screening for an AIRE-1 mutation in patients with Addison’s disease, type 1 diabetes, Graves’ disease and Hashimoto’s thyroiditis as well as in APECED syndrome. Clin Endocrinol (Oxf) 2001;54:335–338.

    Article  CAS  Google Scholar 

  129. Davies TF. Really significant genes for autoimmune thyroid disease do not exist — so how can we predict disease? Thyroid 2007;17:1027–1029.

    Article  PubMed  CAS  Google Scholar 

  130. Brown MA, Pile KD, Kennedy LG, et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann Rheum Dis 1996 55:268–270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Kahaly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dultz, G., Dittmar, M. & Kahaly, G.J. Genetik der Schilddrüsenautoimmunität – Update und klinische Relevanz. Med Klin 104, 210–219 (2009). https://doi.org/10.1007/s00063-009-1034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-009-1034-6

Schlüsselwörter:

Key Words:

Navigation