Skip to main content

Advertisement

Log in

Preprocedural Imaging

A Review of Different Radiological Factors Affecting the Outcome of Thrombectomy

  • Review Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Background

Endovascular treatment (EVT) has strong evidence for its effectiveness in treatment of acute ischemic stroke (AIS); however, up to half of the patients who undergo EVT still do not have good functional outcomes. Various prethrombectomy radiological factors have been shown to be associated with good clinical outcomes and may be the key to better functional outcomes, reduced complications, and reduced mortality. In this paper, we reviewed the current literature on these imaging parameters so they can be employed to better estimate the probability of procedural success, therefore allowing for more effective preprocedural planning of EVT strategies.

We reviewed articles in the literature related to imaging factors which have been shown to be associated with EVT success. The factors which are reviewed in this paper included: anatomical factors such as 1) the type of aortic arch and its characteristics, 2) the characteristics of the thrombus such as length, clot burden, permeability, location, 3) the middle cerebral artery features including the tortuosity and underlying intracranial stenosis, 4) perfusion scans estimating the volume of infarct and the penumbra and 5) the effect of collaterals on the procedure. The prognostic effect of each factor on the successful outcome of EVT is described. The identification of preprocedural thrombectomy imaging factors can help to improve the chances of recanalization, functional outcomes, and mortality. It allows the interventionist to make time-sensitive decisions in the treatment of acute ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG; HERMES collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–31.

    PubMed  Google Scholar 

  2. Hong KS, Ko SB, Lee JS, Yu KH, Rha JH. Endovascular Recanalization Therapy in Acute Ischemic Stroke: Updated Meta-analysis of Randomized Controlled Trials. J Stroke. 2015;17:268–81.

    PubMed  PubMed Central  Google Scholar 

  3. Song D, Cho AH. Previous and Recent Evidence of Endovascular Therapy in Acute Ischemic Stroke. Neurointervention. 2015;10:51–9.

    PubMed  PubMed Central  Google Scholar 

  4. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, Campbell BC, Nogueira RG, Demchuk AM, Tomasello A, Cardona P, Devlin TG, Frei DF, du Mesnil de Rochemont R, Berkhemer OA, Jovin TG, Siddiqui AH, van Zwam WH, Davis SM, Castaño C, Sapkota BL, Fransen PS, Molina C, van Oostenbrugge RJ, Chamorro Á, Lingsma H, Silver FL, Donnan GA, Shuaib A, Brown S, Stouch B, Mitchell PJ, Davalos A, Roos YB, Hill MD; HERMES Collaborators. Time to Treatment With Endovascular Thrombectomy and Outcomes From Ischemic Stroke: A Meta-analysis. JAMA. 2016;316:1279–88.

    PubMed  Google Scholar 

  5. Kim SK, Baek BH, Lee YY, Yoon W. Clinical implications of CT hyperdense artery sign in patients with acute middle cerebral artery occlusion in the era of modern mechanical thrombectomy. J Neurol. 2017;264:2450–6.

    PubMed  Google Scholar 

  6. Zaidat OO, Castonguay AC, Linfante I, Gupta R, Martin CO, Holloway WE, Mueller-Kronast N, English JD, Dabus G, Malisch TW, Marden FA, Bozorgchami H, Xavier A, Rai AT, Froehler MT, Badruddin A, Nguyen TN, Taqi MA, Abraham MG, Yoo AJ, Janardhan V, Shaltoni H, Novakovic R, Abou-Chebl A, Chen PR, Britz GW, Sun CJ, Bansal V, Kaushal R, Nanda A, Nogueira RG. First Pass Effect: A New Measure for Stroke Thrombectomy Devices. Stroke. 2018;49:660–6.

    PubMed  Google Scholar 

  7. Dumont TM, Mokin M, Wach MM, Drummond PS, Siddiqui AH, Levy EI, Hopkins LN. Understanding risk factors for perioperative ischemic events with carotid stenting: is patient age over 80 years or is unfavorable arch anatomy to blame? J Neurointerv Surg. 2014;6:219–24.

    PubMed  Google Scholar 

  8. Burzotta F, Nerla R, Pirozzolo G, Aurigemma C, Niccoli G, Leone AM, Saffioti S, Crea F, Trani C. Clinical and procedural impact of aortic arch anatomic variants in carotid stenting procedures. Catheter Cardiovasc Interv. 2015;86:480–9.

    PubMed  Google Scholar 

  9. Müller MD, Ahlhelm FJ, von Hessling A, Doig D, Nederkoorn PJ, Macdonald S, Lyrer PA, van der Lugt A, Hendrikse J, Stippich C, van der Worp HB, Richards T, Brown MM, Engelter ST, Bonati LH. Vascular Anatomy Predicts the Risk of Cerebral Ischemia in Patients Randomized to Carotid Stenting Versus Endarterectomy. Stroke. 2017;48:1285–92.

    PubMed  Google Scholar 

  10. Snelling BM, Sur S, Shah SS, Chen S, Menaker SA, McCarthy DJ, Yavagal DR, Peterson EC, Starke RM. Unfavorable Vascular Anatomy Is Associated with Increased Revascularization Time and Worse Outcome in Anterior Circulation Thrombectomy. World Neurosurg. 2018;120:e976–83.

    PubMed  Google Scholar 

  11. Knox JA, Alexander MD, McCoy DB, Murph DC, Hinckley PJ, Ch’ang JC, Dowd CF, Halbach VV, Higashida RT, Amans MR, Hetts SW, Cooke DL. Impact of Aortic Arch Anatomy on Technical Performance and Clinical Outcomes in Patients with Acute Ischemic Stroke. AJNR Am J Neuroradiol. 2020;41:268–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaymaz ZO, Nikoubashman O, Brockmann MA, Wiesmann M, Brockmann C. Influence of carotid tortuosity on internal carotid artery access time in the treatment of acute ischemic stroke. Interv Neuroradiol. 2017;23:583–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Khan NR, Peterson J, Dornbos Iii D, Nguyen V, Goyal N, Torabi R, Hoit D, Elijovich L, Inoa-Acosta V, Morris D, Nickele C, Jabbour P, Peterson EC, Arthur AS. Predicting the degree of difficulty of the trans-radial approach in cerebral angiography. J Neurointerv Surg. 2021;13:552–8.

    PubMed  Google Scholar 

  14. Mori T, Kasakura S, Yoshioka K. Computed tomography angiographic anatomical features for successful transbrachial insertion of a balloon guide catheter for mechanical thrombectomy in acute ischemic stroke. Brain Circ. 2020;6:169–74.

    PubMed  PubMed Central  Google Scholar 

  15. Guglielmi V, Groeneveld NS, Posthuma L, Groot AE, Majoie CB, Talacua H, Kaya A, Boekholdt SM, Planken RN, Roos YB, Coutinho JM. Aortic dissection masquerading as a code stroke: A single-centre cohort study. Eur Stroke J. 2020;5:56–62.

    PubMed  Google Scholar 

  16. Yeo LLL, Holmin S, Andersson T, Lundström E, Gopinathan A, Lim EL, Leong BSH, Kuan WS, Ting E, Tan BYQ, Eide SE, Tay ELK. Nongated Cardiac Computed Tomographic Angiograms for Detection of Embolic Sources in Acute Ischemic Stroke. Stroke. 2017;48:1256–61.

    PubMed  Google Scholar 

  17. Yoo AJ, Khatri P, Mocco J, Zaidat OO, Gupta R, Frei D, Lopes D, Shownkeen H, Berkhemer OA, Meyer D, Hak SS, Kuo SS, Buell H, Bose A, Sit SP, von Kummer R; THERAPY Trial Investigators. Impact of Thrombus Length on Outcomes After Intra-Arterial Aspiration Thrombectomy in the THERAPY Trial. Stroke. 2017;48:1895–900.

    PubMed  Google Scholar 

  18. Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42:1775–7.

    PubMed  Google Scholar 

  19. Baek JH, Yoo J, Song D, Kim YD, Nam HS, Kim BM, Kim DJ, Lee HS, Heo JH. Predictive value of thrombus volume for recanalization in stent retriever thrombectomy. Sci Rep. 2017;7:15938.

    PubMed  PubMed Central  Google Scholar 

  20. Puetz V, Dzialowski I, Hill MD, Subramaniam S, Sylaja PN, Krol A, O’Reilly C, Hudon ME, Hu WY, Coutts SB, Barber PA, Watson T, Roy J, Demchuk AM; Calgary CTA Study Group. Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score. Int J Stroke. 2008;3:230–6.

    Google Scholar 

  21. Tan IY, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, Martin M, Symons SP, Fox AJ, Aviv RI. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol. 2009;30:525–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dutra BG, Tolhuisen ML, Alves HCBR, Treurniet KM, Kappelhof M, Yoo AJ, Jansen IGH, Dippel DWJ, van Zwam WH, van Oostenbrugge RJ, da Rocha AJ, Lingsma HF, van der Lugt A, Roos YBWEM, Marquering HA, Majoie CBLM; MR CLEAN Registry Investigators†. Thrombus Imaging Characteristics and Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Treatment. Stroke. 2019;50:2057–64.

    PubMed  Google Scholar 

  23. Santos EM, Dankbaar JW, Treurniet KM, Horsch AD, Roos YB, Kappelle LJ, Niessen WJ, Majoie CB, Velthuis B, Marquering HA; DUST Investigators. Permeable Thrombi Are Associated With Higher Intravenous Recombinant Tissue-Type Plasminogen Activator Treatment Success in Patients With Acute Ischemic Stroke. Stroke. 2016;47:2058–65.

    CAS  PubMed  Google Scholar 

  24. Santos EM, Marquering HA, den Blanken MD, Berkhemer OA, Boers AM, Yoo AJ, Beenen LF, Treurniet KM, Wismans C, van Noort K, Lingsma HF, Dippel DW, van der Lugt A, van Zwam WH, Roos YB, van Oostenbrugge RJ, Niessen WJ, Majoie CB; MR CLEAN Investigators. Thrombus Permeability Is Associated With Improved Functional Outcome and Recanalization in Patients With Ischemic Stroke. Stroke. 2016;47:732–41.

    CAS  PubMed  Google Scholar 

  25. Frölich AM, Schrader D, Klotz E, Schramm R, Wasser K, Knauth M, Schramm P. 4D CT angiography more closely defines intracranial thrombus burden than single-phase CT angiography. AJNR Am J Neuroradiol. 2013;34:1908–13.

    PubMed  PubMed Central  Google Scholar 

  26. Marquering HA, Nederkoorn PJ, Beenen LF, Lycklama à Nijeholt GJ, van den Berg R, Roos YB, Majoie CB. Carotid pseudo-occlusion on CTA in patients with acute ischemic stroke: a concerning observation. Clin Neurol Neurosurg. 2013;115:1591–4.

    PubMed  Google Scholar 

  27. Santos EMM, d’Esterre CD, Treurniet KM, Niessen WJ, Najm M, Goyal M, Demchuk AM, Majoie CB, Menon BK, Marquering HA; PRove-IT investigators. Added value of multiphase CTA imaging for thrombus perviousness assessment. Neuroradiology. 2018;60:71–9.

    CAS  PubMed  Google Scholar 

  28. Moftakhar P, English JD, Cooke DL, Kim WT, Stout C, Smith WS, Dowd CF, Higashida RT, Halbach VV, Hetts SW. Density of thrombus on admission CT predicts revascularization efficacy in large vessel occlusion acute ischemic stroke. Stroke. 2013;44:243–5.

    PubMed  Google Scholar 

  29. Mokin M, Morr S, Natarajan SK, Lin N, Snyder KV, Hopkins LN, Siddiqui AH, Levy EI. Thrombus density predicts successful recanalization with Solitaire stent retriever thrombectomy in acute ischemic stroke. J Neurointerv Surg. 2015;7:104–7.

    PubMed  Google Scholar 

  30. Froehler MT, Tateshima S, Duckwiler G, Jahan R, Gonzalez N, Vinuela F, Liebeskind D, Saver JL, Villablanca JP; UCLA Stroke Investigators. The hyperdense vessel sign on CT predicts successful recanalization with the Merci device in acute ischemic stroke. J Neurointerv Surg. 2013;5:289–93.

    PubMed  Google Scholar 

  31. Spiotta AM, Vargas J, Hawk H, Turner R, Chaudry MI, Battenhouse H, Turk AS. Hounsfield unit value and clot length in the acutely occluded vessel and time required to achieve thrombectomy, complications and outcome. J Neurointerv Surg. 2014;6:423–7.

    PubMed  Google Scholar 

  32. Soize S, Batista AL, Rodriguez Regent C, Trystram D, Tisserand M, Turc G, Serre I, Ben Hassen W, Zuber M, Calvet D, Mas JL, Meder JF, Raymond J, Pierot L, Oppenheim C, Naggara O. Susceptibility vessel sign on T2* magnetic resonance imaging and recanalization results of mechanical thrombectomy with stent retrievers: a multicentre cohort study. Eur J Neurol. 2015;22:967–72.

    CAS  PubMed  Google Scholar 

  33. Guenego A, Fahed R, Sussman ES, Leipzig M, Albers GW, Martin BW, Marcellus DG, Kuraitis G, Marks MP, Lansberg MG, Wintermark M, Heit JJ. Impact of Clot Shape on Successful M1 Endovascular Reperfusion. Front Neurol. 2021;12:642877.

    PubMed  PubMed Central  Google Scholar 

  34. Yock DH Jr. CT demonstration of cerebral emboli. J Comput Assist Tomogr. 1981;5:190–6.

    PubMed  Google Scholar 

  35. Walker BS, Shah LM, Osborn AG. Calcified cerebral emboli, a “do not miss” imaging diagnosis: 22 new cases and review of the literature. AJNR Am J Neuroradiol. 2014;35:1515–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Christian BA, Kirzeder DJ, Boyd J, Laing J, Gash JR. Showered calcific emboli to the brain, the ’salted pretzel’ sign, originating from the ipsilateral internal carotid artery causing acute cerebral infarction. Stroke. 2009;40:e319–21.

    PubMed  Google Scholar 

  37. Chueh JY, Wakhloo AK, Hendricks GH, Silva CF, Weaver JP, Gounis MJ. Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. AJNR Am J Neuroradiol. 2011;32:1237–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Koh E, Kwak HS, Chung GH. Manual Aspiration Thrombectomy in Patients with Acute Stroke-Related Calcified Cerebral Emboli. J Stroke Cerebrovasc Dis. 2017;26:2050–4.

    PubMed  Google Scholar 

  39. Dobrocky T, Piechowiak E, Cianfoni A, Zibold F, Roccatagliata L, Mosimann P, Jung S, Fischer U, Mordasini P, Gralla J. Thrombectomy of calcified emboli in stroke. Does histology of thrombi influence the effectiveness of thrombectomy? J Neurointerv Surg. 2018;10:345–50.

    PubMed  Google Scholar 

  40. Shirakawa M, Yoshimura S, Uchida K, Shindo S, Yamada K, Kuroda J, Takagi T, Takada Y, Ishikura R. Relationship between Hemorrhagic Complications and Target Vessels in Acute Thrombectomy. J Stroke Cerebrovasc Dis. 2017;26:1732–8.

    PubMed  Google Scholar 

  41. Yoo AJ, Andersson T. Thrombectomy in Acute Ischemic Stroke: Challenges to Procedural Success. J Stroke. 2017;19:121–30.

    PubMed  PubMed Central  Google Scholar 

  42. Goyal M, Singh N, Marko M, Hill MD, Menon BK, Demchuk A, Coutts SB, Almekhlafi MA, Ospel JM. Embolic Stroke of Undetermined Source and Symptomatic Nonstenotic Carotid Disease. Stroke. 2020;51:1321–5.

    CAS  PubMed  Google Scholar 

  43. Matias-Guiu JA, Serna-Candel C, Matias-Guiu J. Stroke etiology determines effectiveness of retrievable stents. J Neurointerv Surg. 2014;6:e11.

    PubMed  Google Scholar 

  44. Hwang YH, Kim YW, Kang DH, Kim YS, Liebeskind DS. Impact of Target Arterial Residual Stenosis on Outcome After Endovascular Revascularization. Stroke. 2016;47:1850–7.

    PubMed  PubMed Central  Google Scholar 

  45. Toyoda K, Koga M, Hayakawa M, Yamagami H. Acute reperfusion therapy and stroke care in Asia after successful endovascular trials. Stroke. 2015;46:1474–81.

    CAS  PubMed  Google Scholar 

  46. Kim JS, Bonovich D. Research on intracranial atherosclerosis from the East and west: why are the results different? J Stroke. 2014;16:105–13.

    PubMed  PubMed Central  Google Scholar 

  47. Kang DH, Kim YW, Hwang YH, Park SP, Kim YS, Baik SK. Instant reocclusion following mechanical thrombectomy of in situ thromboocclusion and the role of low-dose intra-arterial tirofiban. Cerebrovasc Dis. 2014;37:350–5.

    CAS  PubMed  Google Scholar 

  48. Heo JH, Lee KY, Kim SH, Kim DI. Immediate reocclusion following a successful thrombolysis in acute stroke: a pilot study. Neurology. 2003;60:1684–7.

    PubMed  Google Scholar 

  49. Baek JH, Kim BM, Kim DJ, Heo JH, Nam HS, Song D, Bang OY. Importance of truncal-type occlusion in stentriever-based thrombectomy for acute stroke. Neurology. 2016;87:1542–50.

    PubMed  Google Scholar 

  50. Baek JH, Kim BM, Kim DJ, Heo JH, Nam HS, Yoo J. Stenting as a Rescue Treatment After Failure of Mechanical Thrombectomy for Anterior Circulation Large Artery Occlusion. Stroke. 2016;47:2360–3.

    PubMed  Google Scholar 

  51. Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 2000;355:1670–4. Erratum in: Lancet 2000;355:2170.

    CAS  PubMed  Google Scholar 

  52. McTaggart RA, Jovin TG, Lansberg MG, Mlynash M, Jayaraman MV, Choudhri OA, Inoue M, Marks MP, Albers GW; DEFUSE 2 Investigators. Alberta stroke program early computed tomographic scoring performance in a series of patients undergoing computed tomography and MRI: reader agreement, modality agreement, and outcome prediction. Stroke. 2015;46:407–12.

    PubMed  Google Scholar 

  53. Kobkitsuksakul C, Tritanon O, Suraratdecha V. Interobserver agreement between senior radiology resident, neuroradiology fellow, and experienced neuroradiologist in the rating of Alberta Stroke Program Early Computed Tomography Score (ASPECTS). Diagn Interv Radiol. 2018;24:104–7.

    PubMed  PubMed Central  Google Scholar 

  54. Maegerlein C, Fischer J, Mönch S, Berndt M, Wunderlich S, Seifert CL, Lehm M, Boeckh-Behrens T, Zimmer C, Friedrich B. Automated Calculation of the Alberta Stroke Program Early CT Score: Feasibility and Reliability. Radiology. 2019;291:141–8.

    PubMed  Google Scholar 

  55. Pfaff J, Herweh C, Schieber S, Schönenberger S, Bösel J, Ringleb PA, Möhlenbruch M, Bendszus M, Nagel S. e-ASPECTS Correlates with and Is Predictive of Outcome after Mechanical Thrombectomy. AJNR Am J Neuroradiol. 2017;38:1594–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Teo YH, Lim ICZY, Tseng FS, Teo YN, Kow CS, Ng ZHC, Chan Ko Ko N, Sia CH, Leow AST, Yeung W, Kong WY, Chan BPL, Sharma VK, Yeo LLL, Tan BYQ. Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning: A Systematic Review and Meta-analysis. Clin Neuroradiol. 2021; https://doi.org/10.1007/s00062-020-00990-3

    Article  PubMed  Google Scholar 

  57. Hjort N, Christensen S, Sølling C, Ashkanian M, Wu O, Røhl L, Gyldensted C, Andersen G, Østergaard L. Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol. 2005;58:462–5.

    PubMed  Google Scholar 

  58. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369:293–8.

    PubMed  PubMed Central  Google Scholar 

  59. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, Sila CA, Hassan AE, Millan M, Levy EI, Mitchell P, Chen M, English JD, Shah QA, Silver FL, Pereira VM, Mehta BP, Baxter BW, Abraham MG, Cardona P, Veznedaroglu E, Hellinger FR, Feng L, Kirmani JF, Lopes DK, Jankowitz BT, Frankel MR, Costalat V, Vora NA, Yoo AJ, Malik AM, Furlan AJ, Rubiera M, Aghaebrahim A, Olivot JM, Tekle WG, Shields R, Graves T, Lewis RJ, Smith WS, Liebeskind DS, Saver JL, Jovin TG; DAWN Trial Investigators. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med. 2018;378:11–21.

    PubMed  Google Scholar 

  60. Legrand L, Turc G, Edjlali M, Beaumont M, Gautheron V, Ben Hassen W, Charron S, Trystram D, Boulouis G, Bourcier R, Benzakoun J, Naggara O, Clarençon F, Bracard S, Oppenheim C; THRACE Investigators. Benefit from revascularization after thrombectomy according to FLAIR vascular hyperintensities-DWI mismatch. Eur Radiol. 2019;29:5567–76.

    PubMed  Google Scholar 

  61. Sakakibara F, Yoshimura S, Numa S, Uchida K, Kinjo N, Morimoto T. Diffusion-Weighted Imaging-Fluid-Attenuated Inversion Recovery Mismatch Is Associated with 90-Day Functional Outcomes in Patients Undergoing Mechanical Thrombectomy. Cerebrovasc Dis. 2020;49:292–300.

    PubMed  Google Scholar 

  62. Escalard S, Gory B, Kyheng M, Desilles JP, Redjem H, Ciccio G, Smajda S, Labreuche J, Mazighi M, Piotin M, Blanc R, Lapergue B, Fahed R; of the ETIS (Endovascular Treatment in Ischemic Stroke) Research Investigators. Unknown-onset strokes with anterior circulation occlusion treated by thrombectomy after DWI-FLAIR mismatch selection. Eur J Neurol. 2018;25:732–8.

    CAS  PubMed  Google Scholar 

  63. Campbell BC, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM, Parsons MW. Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke. 2011;42:3435–40.

    PubMed  Google Scholar 

  64. Cereda CW, Christensen S, Campbell BCV, Mishra NK, Mlynash M, Levi C, Straka M, Wintermark M, Bammer R, Albers GW, Parsons MW, Lansberg MG. A benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a DWI standard. J Cereb Blood Flow Metab. 2016;36:1780–9.

    PubMed  Google Scholar 

  65. Bivard A, McElduff P, Spratt N, Levi C, Parsons M. Defining the extent of irreversible brain ischemia using perfusion computed tomography. Cerebrovasc Dis. 2011;31:238–45.

    PubMed  Google Scholar 

  66. Lin L, Bivard A, Krishnamurthy V, Levi CR, Parsons MW. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core. Radiology. 2016;279:876–87.

    PubMed  Google Scholar 

  67. Wheeler HM, Mlynash M, Inoue M, Tipirneni A, Liggins J, Zaharchuk G, Straka M, Kemp S, Bammer R, Lansberg MG, Albers GW; DEFUSE 2 Investigators. Early diffusion-weighted imaging and perfusion-weighted imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke. 2013;44:681–5.

    PubMed  PubMed Central  Google Scholar 

  68. Copen WA, Morais LT, Wu O, Schwamm LH, Schaefer PW, González RG, Yoo AJ. In Acute Stroke, Can CT Perfusion-Derived Cerebral Blood Volume Maps Substitute for Diffusion-Weighted Imaging in Identifying the Ischemic Core? PLoS One. 2015;10:e0133566.

    PubMed  PubMed Central  Google Scholar 

  69. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke. 2006;37:1334–9.

    PubMed  Google Scholar 

  70. Schaefer PW, Souza L, Kamalian S, Hirsch JA, Yoo AJ, Kamalian S, Gonzalez RG, Lev MH. Limited reliability of computed tomographic perfusion acute infarct volume measurements compared with diffusion-weighted imaging in anterior circulation stroke. Stroke. 2015;46:419–24.

    PubMed  Google Scholar 

  71. Geuskens RR, Borst J, Lucas M, Boers AM, Berkhemer OA, Roos YB, van Walderveen MA, Jenniskens SF, van Zwam WH, Dippel DW, Majoie CB, Marquering HA; MR CLEAN trial investigators (www.mrclean-trial.org). Characteristics of Misclassified CT Perfusion Ischemic Core in Patients with Acute Ischemic Stroke. PLoS One. 2015;10:e0141571.

    PubMed  PubMed Central  Google Scholar 

  72. Yoo J, Choi JW, Lee SJ, Hong JM, Hong JH, Kim CH, Kim YW, Kang DH, Kim YS, Hwang YH, Ovbiagele B, Demchuk AM, Lee JS, Sohn SI. Ischemic Diffusion Lesion Reversal After Endovascular Treatment. Stroke. 2019;50:1504–9.

    PubMed  Google Scholar 

  73. Berkhemer OA, Jansen IG, Beumer D, Fransen PS, van den Berg LA, Yoo AJ, Lingsma HF, Sprengers ME, Jenniskens SF, Lycklama À Nijeholt GJ, van Walderveen MA, van den Berg R, Bot JC, Beenen LF, Boers AM, Slump CH, Roos YB, van Oostenbrugge RJ, Dippel DW, van der Lugt A, van Zwam WH, Marquering HA, Majoie CB; MR CLEAN Investigators. Collateral Status on Baseline Computed Tomographic Angiography and Intra-Arterial Treatment Effect in Patients With Proximal Anterior Circulation Stroke. Stroke. 2016;47:768–76.

    CAS  PubMed  Google Scholar 

  74. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF, Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.

    CAS  PubMed  Google Scholar 

  75. Yeo LL, Paliwal P, Teoh HL, Seet RC, Chan BP, Ting E, Venketasubramanian N, Leow WK, Wakerley B, Kusama Y, Rathakrishnan R, Sharma VK. Assessment of intracranial collaterals on CT angiography in anterior circulation acute ischemic stroke. AJNR Am J Neuroradiol. 2015;36:289–94. Erratum in: AJNR Am J Neuroradiol. 2015;36:E52.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu AY, Zerna C, Assis Z, Holodinsky JK, Randhawa PA, Najm M, Goyal M, Menon BK, Demchuk AM, Coutts SB, Hill MD. Multiphase CT angiography increases detection of anterior circulation intracranial occlusion. Neurology. 2016;87:609–16.

    PubMed  PubMed Central  Google Scholar 

  77. Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, Goyal M. Multiphase CT Angiography: A New Tool for the Imaging Triage of Patients with Acute Ischemic Stroke. Radiology. 2015;275:510–20.

    PubMed  Google Scholar 

  78. Polito V, La Piana R, Del Pilar Cortes M, Tampieri D. Assessment of clot length with multiphase CT angiography in patients with acute ischemic stroke. Neuroradiol J. 2017;30:593–9.

    PubMed  PubMed Central  Google Scholar 

  79. García-Tornel A, Carvalho V, Boned S, Flores A, Rodríguez-Luna D, Pagola J, Muchada M, Sanjuan E, Coscojuela P, Juega J, Rodriguez-Villatoro N, Menon B, Goyal M, Ribó M, Tomasello A, Molina CA, Rubiera M. Improving the Evaluation of Collateral Circulation by Multiphase Computed Tomography Angiography in Acute Stroke Patients Treated with Endovascular Reperfusion Therapies. Interv Neurol. 2016;5:209–17.

    PubMed  PubMed Central  Google Scholar 

  80. Lu SS, Zhang X, Xu XQ, Cao YZ, Zhao LB, Liu QH, Wu FY, Liu S, Shi HB. Comparison of CT angiography collaterals for predicting target perfusion profile and clinical outcome in patients with acute ischemic stroke. Eur Radiol. 2019;29:4922–9.

    PubMed  Google Scholar 

  81. Hernández-Pérez M, Puig J, Blasco G, Pérez de la Ossa N, Dorado L, Dávalos A, Munuera J. Dynamic Magnetic Resonance Angiography Provides Collateral Circulation and Hemodynamic Information in Acute Ischemic Stroke. Stroke. 2016;47:531–4.

    PubMed  Google Scholar 

  82. Ernst M, Forkert ND, Brehmer L, Thomalla G, Siemonsen S, Fiehler J, Kemmling A. Prediction of infarction and reperfusion in stroke by flow- and volume-weighted collateral signal in MR angiography. AJNR Am J Neuroradiol. 2015;36:275–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mucke J, Möhlenbruch M, Kickingereder P, Kieslich PJ, Bäumer P, Gumbinger C, Purrucker J, Mundiyanapurath S, Schlemmer HP, Bendszus M, Radbruch A. Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome. PLoS One. 2015;10:e0120801.

    PubMed  PubMed Central  Google Scholar 

  84. Arenillas JF, Cortijo E, García-Bermejo P, Levy EI, Jahan R, Liebeskind D, Goyal M, Saver JL, Albers GW. Relative cerebral blood volume is associated with collateral status and infarct growth in stroke patients in SWIFT PRIME. J Cereb Blood Flow Metab. 2018;38:1839–47. Erratum in: J Cereb Blood Flow Metab. 2018;38:1849.

    PubMed  Google Scholar 

  85. Nael K, Doshi A, De Leacy R, Puig J, Castellanos M, Bederson J, Naidich TP, Mocco J, Wintermark M. MR Perfusion to Determine the Status of Collaterals in Patients with Acute Ischemic Stroke: A Look Beyond Time Maps. AJNR Am J Neuroradiol. 2018;39:219–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Olivot JM, Mlynash M, Inoue M, Marks MP, Wheeler HM, Kemp S, Straka M, Zaharchuk G, Bammer R, Lansberg MG, Albers GW; DEFUSE 2 Investigators. Hypoperfusion intensity ratio predicts infarct progression and functional outcome in the DEFUSE 2 Cohort. Stroke. 2014;45:1018–23. Erratum in: Stroke. 2014;45:e92.

    PubMed  PubMed Central  Google Scholar 

  87. Guenego A, Mlynash M, Christensen S, Kemp S, Heit JJ, Lansberg MG, Albers GW. Hypoperfusion ratio predicts infarct growth during transfer for thrombectomy. Ann Neurol. 2018;84:616–20.

    PubMed  Google Scholar 

  88. Albers GW, Lansberg MG, Kemp S, Tsai JP, Lavori P, Christensen S, Mlynash M, Kim S, Hamilton S, Yeatts SD, Palesch Y, Bammer R, Broderick J, Marks MP. A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3). Int J Stroke. 2017;12:896–905.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was sponsored by the National Medical Research Council (NMRC), Singapore (Grant number: NMRC/FLWSHP/043/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard L.L. Yeo.

Ethics declarations

Conflict of interest

T. Andersson is a consultant for Neuravi/Cerenovus, Anaconda, Amnis Therapeutics, and Rapid Medical; served on the steering committees of the ARISE studies. P. Bhogal reports personal fees from phenox, personal fees from perflow, and grants and personal fees from Balt outside the submitted work; in addition, P. Bhogal has a patent for a Vasospasm stent issued. M. Jing, J.Y. Yeo, S. Holmin, F. Arnberg, C. Yang, A. Gopinathan, T.M. Tu, B.Y.Q. Tan, C.H. Sia, H.L. Teoh, P.R. Paliwal, B.P.L. Chan, V. Sharma and L.L. Yeo declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, M., Yeo, J.Y., Holmin, S. et al. Preprocedural Imaging. Clin Neuroradiol 32, 13–24 (2022). https://doi.org/10.1007/s00062-021-01095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-021-01095-1

Keywords

Navigation