Skip to main content

Advertisement

Log in

Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to predict hematoma expansion (HE) by radiomic models based on different machine learning methods and determine the best radiomic model through the comparison.

Method

A total of 108 patients with intracerebral hemorrhage were retrospectively evaluated. Images of baseline non-contrast computed tomography (NCCT) and follow-up NCCT scan within 24 h were retrospectively reviewed. An HE was defined as a volume increase of more than 33% or an increase greater than 12.5 mL from the volume of the baseline NCCT. Texture parameters of the baseline NCCT images were selected by the least absolute shrinkage and selection operator (LASSO) regression. We used support vector machine (SVM), decision tree (DT), conditional inference trees (CIT), random forest (RF), k‑nearest neighbors (KNN), back-propagation neural network (BPNet) and Bayes to build models. Receiver operating characteristic (ROC) analysis and decision curve analysis (DCA) was performed and compared among models.

Results

Every model had a relatively high AUC (all > 0.75), SVM and KNN had the highest AUC of 0.91. There were significant differences between SVM and CIT (Z > 2.266, p = 0.02345), KNN and CIT (Z = 2.4834, p = 0.01301), RF and CIT (Z = 2.6956, p = 0.007027), KNN and BPNet (Z = 2.0122, p = 0.0442), RF and BPNet (Z = 1.9793, p = 0.04778). There was no significant difference among SVM, DT, RF, KNN and Bayes (p > 0.05). The SVM obtained the largest net benefit when the threshold probability was less than 0.33, while KNN obtained the largest net benefit when the threshold probability was greater than 0.33. Combined with ROC and DCA, SVM and KNN performed better in all the models for predicting HE.

Conclusion

Radiomic models based on different machine learning methods can be used to predict HE and the models generated by SVM and KNN performed best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the ROC curves

BPNet:

Back-propagation neural network

CIT:

Conditional inference trees CIT

CTA:

Computed tomography angiography

DCA:

Decision curve analysis

DT:

Decision tree

HE:

Hematoma expansion

ICC:

Intraclass correlation coefficient

ICH:

Intracerebral hemorrhage

KNN:

K‑nearest neighbors

LASSO:

Least absolute shrinkage and selection operator

NCCT:

Non-contrast computed tomography

RF:

Random forest

ROC:

Receiver operating characteristic

ROI:

Region of interest

SVM:

Support vector machine

U:

Uniformity

V:

Variance

References

  1. Falcone GJ, Biffi A, Brouwers HB, Anderson CD, Battey TW, Ayres AM, Vashkevich A, Schwab K, Rost NS, Goldstein JN, Viswanathan A, Greenberg SM, Rosand J. Predictors of hematoma volume in deep and lobar supratentorial intracerebral hemorrhage. JAMA Neurol. 2013;70:988–94.

    Article  Google Scholar 

  2. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:1450–60.

    Article  CAS  Google Scholar 

  3. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9:167–76.

    Article  Google Scholar 

  4. Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW, Vashkevich A, McNamara KA, Valant V, Schwab K, Orzell SC, Bresette LM, Feske SK, Rost NS, Romero JM, Viswanathan A, Chou SH, Greenberg SM, Rosand J, Goldstein JN. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71:158–64.

    Article  Google Scholar 

  5. Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, Heeley EL, Wang J, Parsons MW, Liu G, Anderson CS; INTERACT1 Investigators. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–9.

    Article  Google Scholar 

  6. Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE; VISTA Collaboration. Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology. 2011;76:1238–44.

    Article  CAS  Google Scholar 

  7. Balami JS, Buchan AM. Complications of intracerebral haemorrhage. Lancet Neurol. 2012;11:101–18.

    Article  Google Scholar 

  8. Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW, Vashkevich A, McNamara KA, Valant V, Schwab K, Orzell SC, Bresette LM, Feske SK, Rost NS, Romero JM, Viswanathan A, Chou SH, Greenberg SM, Rosand J, Goldstein JN. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71:158–64.

    Article  Google Scholar 

  9. Li Q, Liu QJ, Yang WS, Wang XC, Zhao LB, Xiong X, Li R, Cao D, Zhu D, Wei X, Xie P. Island sign: An imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage. Stroke. 2017;48:3019–25.

    Article  Google Scholar 

  10. Li Q, Zhang G, Huang YJ, Dong MX, Lv FJ, Wei X, Chen JJ, Zhang LJ, Qin XY, Xie P. Blend sign on computed tomography: Novel and reliable predictor for early hematoma growth in patients with intracerebral hemorrhage. Stroke. 2015;46:2119–23.

    Article  Google Scholar 

  11. Sporns PB, Schwake M, Schmidt R, Kemmling A, Minnerup J, Schwindt W, Cnyrim C, Zoubi T, Heindel W, Niederstadt T, Hanning U. Computed tomographic blend sign is associated with computed tomographic angiography spot sign and predicts secondary neurological deterioration after intracerebral hemorrhage. Stroke. 2017;48:131–5.

    Article  Google Scholar 

  12. Li Q, Zhang G, Xiong X, Wang XC, Yang WS, Li KW, Wei X, Xie P. Black hole sign: Novel imaging marker that predicts hematoma growth in patients with intracerebral hemorrhage. Stroke. 2016;47:1777–81.

    Article  Google Scholar 

  13. Ng D, Churilov L, Mitchell P, Dowling R, Yan B. The CT swirl sign is associated with hematoma expansion in intracerebral hemorrhage. AJNR Am J Neuroradiol. 2018;39:232–7.

    Article  CAS  Google Scholar 

  14. Demchuk AM, Dowlatshahi D, Rodriguez-Luna D, Molina CA, Blas YS, Dzialowski I, Kobayashi A, Boulanger JM, Lum C, Gubitz G, Padma V, Roy J, Kase CS, Kosior J, Bhatia R, Tymchuk S, Subramaniam S, Gladstone DJ, Hill MD, Aviv RI; PREDICT/Sunnybrook ICH CTA study group. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11:307–14. Erratum in: Lancet Neurol. 2012;11:483.

    Google Scholar 

  15. Orito K, Hirohata M, Nakamura Y, Takeshige N, Aoki T, Hattori G, Sakata K, Abe T, Uchiyama Y, Sakamoto T, Morioka M. Leakage sign for primary intracerebral hemorrhage: A novel predictor of hematoma growth. Stroke. 2016;47:958–63.

    Article  Google Scholar 

  16. Peng WJ, Reis C, Reis H, Zhang J, Yang J. Predictive value of CTA spot sign on hematoma expansion in intracerebral hemorrhage patients. Biomed Res Int. 2017;2017:4137210.

    PubMed  PubMed Central  Google Scholar 

  17. Boulouis G, Morotti A, Charidimou A, Dowlatshahi D, Goldstein JN. Noncontrast computed tomography markers of intracerebral hemorrhage expansion. Stroke. 2017;48:1120–5.

    Article  Google Scholar 

  18. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016;278:563–77.

    Article  Google Scholar 

  19. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234–48.

    Article  Google Scholar 

  20. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.

    Article  Google Scholar 

  21. Shen Q, Shan Y, Hu Z, Chen W, Yang B, Han J, Huang Y, Xu W, Feng Z. Quantitative parameters of CT texture analysis as potential markersfor early prediction of spontaneous intracranial hemorrhage enlargement. Eur Radiol. 2018;28:4389–96.

    Article  Google Scholar 

  22. Xie H, Ma S, Wang X, Zhang X. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Eur Radiol. 2020;30:87–98.

    Article  Google Scholar 

  23. Ma C, Zhang Y, Niyazi T, Wei J, Guocai G, Liu J, Liang S, Liang F, Yan P, Wang K, Jiang C. Radiomics for predicting hematoma expansion in patients with hypertensive intraparenchymal hematomas. Eur J Radiol. 2019;115:10–5.

    Article  Google Scholar 

  24. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63. Erratum in: J Chiropr Med. 2017;16:346.

    Article  Google Scholar 

  25. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  Google Scholar 

  26. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006;26:565–74.

    Article  Google Scholar 

  27. Rousson V, Zumbrunn T. Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case-control studies. BMC Med Inform Decis Mak. 2011;11:45.

    Article  Google Scholar 

  28. Xu X, Zhang J, Yang K, Wang Q, Xu B, Chen X. Accuracy of spot sign in predicting hematoma expansion and clinical outcome: A meta-analysis. Medicine (Baltimore). 2018;97:e11945.

    Article  Google Scholar 

  29. Barras CD, Tress BM, Christensen S, Collins M, Desmond PM, Skolnick BE, Mayer SA, Davis SM; Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators. Quantitative CT densitometry for predicting intracerebral hemorrhage growth. AJNR Am J Neuroradiol. 2013;34:1139–44.

    Article  CAS  Google Scholar 

  30. Ng F, Kozarski R, Ganeshan B, Goh V. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol. 2013;82:342–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Liu.

Ethics declarations

Conflict of interest

Chongfeng Duan, Fang Liu, Song Gao, Jiping Zhao, Lei Niu, Nan Li, Song Liu, Gang Wang, Xiaoming Zhou, Yande Ren, Wenjian Xu and Xuejun Liu declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Liu, F., Gao, S. et al. Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion. Clin Neuroradiol 32, 215–223 (2022). https://doi.org/10.1007/s00062-021-01040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-021-01040-2

Keywords

Navigation