Review of Temporal Bone Microanatomy

Aqueducts, Canals, Clefts and Nerves


Temporal bone microanatomy is a common source of consternation for radiologists. Serpentine foramina, branching cranial nerves, and bony canals containing often clinically relevant but often miniscule arterial branches may all cause confusion, even among radiologists familiar with temporal bone imaging. In some cases, the tiniest structures may be occult or poorly visualized, even on thin-slice computed tomography (CT) images. Consequently, such structures are often either ignored or mistaken for pathologic entities. Yet even the smallest temporal bone structures have significant anatomic and pathologic importance. This paper reviews the anatomy and function of the temporal bone aqueducts, canals, clefts, and nerves, as well as the relevant developmental, inflammatory, and neoplastic processes that affect each structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Koesling S, Kunkel P, Schul T. Vascular anomalies, sutures and small canals of the temporal bone on axial CT. Eur J Radiol. 2005;54:335–43.

    Google Scholar 

  2. 2.

    Lo WW, Daniels DL, Chakeres DW, Linthicum FH Jr, Ulmer JL, Mark LP, Swartz JD. The endolymphatic duct and sac. AJNR Am J Neuroradiol. 1997;18:881-7.

    Google Scholar 

  3. 3.

    Antonelli PJ, Varela AE, Mancuso AA. Diagnostic yield of high-resolution computed tomography for pediatric sensorineural hearing loss. Laryngoscope. 1999;109:1642–7.

    CAS  Google Scholar 

  4. 4.

    Ruthberg J, Ascha MS, Kocharyan A, Gupta A, Murray GS, Megerian CA, Otteson TD. Sex-specific enlarged vestibular aqueduct morphology and audiometry. Am J Otolaryngol. 2019;40:473-7.

    Article  Google Scholar 

  5. 5.

    Vijayasekaran S, Halsted MJ, Boston M, Meinzen-Derr J, Bardo DM, Greinwald J, Benton C. When is the vestibular aqueduct enlarged? A statistical analysis of the normative distribution of vestibular aqueduct size. AJNR Am J Neuroradiol. 2007;28:1133–8.

    CAS  Google Scholar 

  6. 6.

    Juliano AF, Ginat DT, Moonis G. Imaging review of the temporal Bone: part II. Traumatic, postoperative, and noninflammatory nonneoplastic conditions. Radiology. 2015;276:655–72.

    Google Scholar 

  7. 7.

    Mori T, Westerberg BD, Atashband S, Kozak FK. Natural history of hearing loss in children with enlarged vestibular aqueduct syndrome. J Otolaryngol Head Neck Surg. 2008;37:112–8.

    Google Scholar 

  8. 8.

    Arjmand EM, Webber A. Audiometric Findings in Children With a Large Vestibular Aqueduct. Arch Otolaryngol Head Neck Surg. 2004;130:1169–74.

    Google Scholar 

  9. 9.

    Callison D, Horn KL. Large vestibular aqueduct syndrome: an overlooked etiology for progressive childhood hearing loss. J Am Acad Audiol. 1998;9:285–91.

    CAS  Google Scholar 

  10. 10.

    Shekdar KV, Bilaniuk LT. Imaging of pediatric hearing loss. Neuroimaging Clin N Am. 2019;29:103–15.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Davidson HC, Harnsberger HR, Lemmerling MM, Mancuso AA, White DK, Tong KA, Dahlen RT, Shelton C. MR evaluation of vestibulocochlear anomalies associated with large endolymphatic duct and sac. AJNR Am J Neuroradiol. 1999;20:1435–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Krombach GA, van den Boom M, Di Martino E, Schmitz-Rode T, Westhofen M, Prescher A, Günther RW, Wildberger JE. Computed tomography of the inner ear: size of anatomical structures in the normal temporal bone and in the temporal bone of patients with Menière’s disease. Eur Radiol. 2005;15:1505–13.

    Google Scholar 

  13. 13.

    Söderman AC, Möller J, Bagger-Sjöbäck D, Bergenius J, Hallqvist J. Stress as a trigger of attacks in Menière’s disease. A case-crossover study. Laryngoscope. 2004;114:1843–8.

    Google Scholar 

  14. 14.

    Lucinda LR, Cristoff DD, Coelho LOM, Zanini OPL, Guimarães RCC. Anatomical variations in patients with Ménière disease: a tomography study. Int Arch Otorhinolaryngol. 2018;22:231–8.

    Google Scholar 

  15. 15.

    Patel VA, Oberman BS, Zacharia TT, Isildak H. Magnetic resonance imaging findings in Ménière’s disease. J Laryngol Otol. 2017;131:602–7.

    CAS  Google Scholar 

  16. 16.

    Yamane H, Konishi K, Sakamaoto H, Yamamoto H, Matsushita N, Oishi M, Iguchi H, Inoue Y. Practical 3DCT imaging of the vestibular aqueduct for Meniere’s disease. Acta Otolaryngol. 2015;135:799–806.

    Google Scholar 

  17. 17.

    Maiolo V, Savastio G, Modugno GC, Barozzi L. Relationship between multidetector CT imaging of the vestibular aqueduct and inner ear pathologies. Neuroradiol J. 2013;26:683–92.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lonser RR, Kim HJ, Butman JA, Vortmeyer AO, Choo DI, Oldfield EH. Tumors of the endolymphatic sac in von Hippel–Lindau disease. N Engl J Med. 2004;350:2481–6.

    CAS  Google Scholar 

  19. 19.

    Manski TJ, Heffner DK, Glenn GM, Patronas NJ, Pikus AT, Katz D, Lebovics R, Sledjeski K, Choyke PL, Zbar B, Linehan WM, Oldfield EH. Endolymphatic sac tumors. A source of morbid hearing loss in von Hippel-Lindau disease. JAMA. 1997;277:1461–6.

    CAS  Google Scholar 

  20. 20.

    Lo WW, Applegate LJ, Carberry JN, Solti-Bohman LG, House JW, Brackmann DE, Waluch V, Li JC. Endolymphatic sac tumors: radiologic appearance. Radiology. 1993;189:199–204.

    CAS  Google Scholar 

  21. 21.

    Mukherji SK, Albernaz VS, Lo WW, Gaffey MJ, Megerian CA, Feghali JG, Brook A, Lewin JS, Lanzieri CF, Talbot JM, Meyer JR, Carmody RF, Weissman JL, Smirniotopoulos JG, Rao VM, Jinkins JR, Castillo M. Papillary endolymphatic sac tumors: CT, MR imaging, and angiographic findings in 20 patients. Radiology. 1997;202:801–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Patel NP, Wiggins RH, Shelton C. The radiologic diagnosis of Endolymphatic sac tumors. Laryngoscope. 2006;116:40–6.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Park JJ, Shen A, Keil S, Kraemer N, Westhofen M. Radiological findings of the cochlear aqueduct in patients with Meniere’s disease using high-resolution CT and high-resolution MRI. Eur Arch Otorhinolaryngol. 2014;271:3325–31.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gopen Q, Rosowski JJ, Merchant SN. Anatomy of the normal human cochlear aqueduct with functional implications. Hear Res. 1997;107:9–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wichova H, Alvi S, Boatright C, Ledbetter L, Staecker H, Lin J. High-resolution computed tomography of the inner ear: effect of otosclerosis on cochlear aqueduct dimensions. Ann Otol Rhinol Laryngol. 2019;128:749-54.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hofman R, Segenhout JM, Albers FWJ, Wit HP. The relationship of the round window membrane to the cochlear aqueduct shown in three-dimensional imaging. Hear Res. 2005;209:19–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Migirov L, Kronenberg J. Radiology of the cochlear aqueduct. Ann Otol Rhinol Laryngol. 2005;114:863–6.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Song CI, Kang WS, Lee JH, Chung JW. Diameter of the medial side of the cochlear aqueduct is narrower in Meniere’s disease: a radiologic analysis. J Int Adv Otol. 2016;12:156–60.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yilmazer C, Sennaroglu L, Basaran F, Sennaroglu G. Relationship of the cochlear aqueduct and inner ear pressure in Ménière’s disease and in a normal population. Otol Neurotol. 2001;22:534–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mukherji SK, Baggett HC, Alley J, Carrasco VH. Enlarged cochlear aqueduct. Am J Neuroradiol. 1998;19:330–2.

    CAS  Google Scholar 

  31. 31.

    Jackler RK, Hwang PH. Enlargement of the Cochlear Aqueduct: Fact or Fiction? Otolaryngol Head Neck Surg. 1993;109:14–25.

    CAS  Google Scholar 

  32. 32.

    Kim BG, Sim NS, Kim SH, Kim UK, Kim S, Choi JY. Enlarged cochlear aqueducts: a potential route for CSF gushers in patients with enlarged vestibular aqueducts. Otol Neurotol. 2013;34:1660–5.

    Google Scholar 

  33. 33.

    Wahba H, Youssef T. Stapedectomy gusher: a clinical experience. J Int Adv Otol. 2010;6:149–54.

    Google Scholar 

  34. 34.

    Proctor B. The petromastoid canal. Ann Otol Rhinol Laryngol. 1983;92:640-4.

    CAS  Google Scholar 

  35. 35.

    Skrzat J, Leszczyński B, Kozerska M, Wróbel A. Topography and morphometry of the subarcuate canal. Folia Morphol (Warsz). 2013;72:357–61.

    CAS  Google Scholar 

  36. 36.

    Migirov L, Kronenberg J. Radiology of the petromastoid canal. Otol Neurotol. 2006;27:410–3.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Brantberg K, Greitz D, Pansell T. Subarcuate venous malformation causing audio-vestibular symptoms similar to those in superior canal dehiscence syndrome. Otol Neurotol. 2004;25:993–7.

    Google Scholar 

  38. 38.

    Wilbrand H, Rauschning W, Ruhn G. The subarcuate fossa and channel. A radioanatomic investigation. Acta Radiol Diagn (Stockh). 1986;27:637-44.

    CAS  Google Scholar 

  39. 39.

    Tekdemir I, Aslan A, Elhan A. The subarcuate canaliculus and its artery—a radioanatomical study. Ann Anat. 1999;181:207-11.

    CAS  Google Scholar 

  40. 40.

    Krombach GA, Schmitz-Rode T, Prescher A, DiMartino E, Weidner J, Günther RW. The petromastoid canal on computed tomography. Eur Radiol. 2002;12:2770–5.

    CAS  Google Scholar 

  41. 41.

    Akyol Y, Galheigo D, Massimore M, Fatterpekar G. Subarcuate artery and canal: an important anatomic variant. J Comput Assist Tomogr. 2011;35:688–9.

    Google Scholar 

  42. 42.

    Leung JY, Ishak GE. Prominent subarcuate canal in children: a normal variant. Pediatr Radiol. 2010;40 Suppl 1:S161.

    Google Scholar 

  43. 43.

    Hilding DA. Petrous apex and subarcuate fossa maturation. Laryngoscope. 1987;97:1129–35.

    CAS  Google Scholar 

  44. 44.

    Silverstein H, Norrell H, Smouha E, Haberkamp T. The singular canal: a valuable landmark in surgery of the internal auditory canal. Otolaryngol Head Neck Surg. 1988;98:138–43.

    CAS  Google Scholar 

  45. 45.

    Kozerska M, Skrzat J. Anatomy of the fundus of the internal acoustic meatus—micro-computed tomography study. Folia Morphol (Warsz). 2015;74:352-8.

    CAS  Google Scholar 

  46. 46.

    Muren C, Wadin K, Dimopoulos P. Radioanatomy of the singular nerve canal. Eur Radiol. 1991;1:65–9.

    Google Scholar 

  47. 47.

    Fatterpekar GM, Doshi AH, Dugar M, Delman BN, Naidich TP, Som PM. Role of 3D CT in the evaluation of the temporal bone. Radiographics. 2006;26:S117–32.

    Google Scholar 

  48. 48.

    Zhang ZY, Wang Z, Yin GX, Wang ZC. A study of quantitative measurement of singular nerve canal with cone-beam computed tomography. Zhonghua Yi Xue Za Zhi. 2018;98:2978–81.

    CAS  Google Scholar 

  49. 49.

    Fatterpekar GM, Mukherji SK, Lin Y, Alley JG, Stone JA, Castillo M. Normal canals at the fundus of the internal auditory canal: CT evaluation. J Comput Assist Tomogr. 1999;23:776–80.

    CAS  Google Scholar 

  50. 50.

    Agirdir BV, Sindel M, Arslan G, Yildirim FB, Balkan EI, Dinç O. The canal of the posterior ampullar nerve: an important anatomic landmark in the posterior fossa transmeatal approach. Surg Radiol Anat. 2001;23:331–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Gacek RR, Gacek MR. Results of singular neurectomy in the posterior ampullary recess. ORL J Otorhinolaryngol Relat Spec. 2002;64:397–402.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Chadwell JB, Halsted MJ, Choo DI, Greinwald JH, Benton C. The cochlear cleft. AJNR Am J Neuroradiol. 2004;25:21–4.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Moser T, Veillon F, Sick H, Riehm S. The hypodense focus in the petrous apex: a potential pitfall on multidetector CT imaging of the temporal bone. AJNR Am J Neuroradiol. 2008;29:35–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Pekkola J, Pitkaranta A, Jappel A, Czerny C, Baumgartner WD, Heliovaara M, Robinson S. Localized pericochlear hypoattenuating foci at temporal-bone thin-section CT in pediatric patients: nonpathologic differential diagnostic entity? Radiology. 2004;230:88–92.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Jégoux F1, Malard O, Gayet-Delacroix M, Bordure P, Legent F, Beauvillain de Montreuil C. Hyrtl’s fissure: a case of spontaneous cerebrospinal fluid otorrhea. AJNR Am J Neuroradiol. 2005;26:963–6.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Zakaryan A, Poulsgaard L, Hollander C, Fugleholm K. Spontaneous cerebrospinal fluid otorrhea from a persistent tympanomeningeal fissure presenting as recurrent serous otitis media. J Neurol Surg Rep. 2015;76:e117–9.

    Google Scholar 

  57. 57.

    Rich PM, Graham J, Phelps PD. Hyrtl’s fissure. Otol Neurotol. 2002;23:476–82.

    CAS  Google Scholar 

  58. 58.

    Mouzali A, Ouennoughi K, Haraoubia MS, Zemirli O, Triglia JM. Cochlear implant electrode array misplaced in Hyrtl’s fissure. Int J Pediatr Otorhinolaryngol. 2011;75:1459–62.

    Google Scholar 

  59. 59.

    Tozoğlu U, Caglayan F, Harorlı A. Foramen tympanicum or foramen of Huschke: anatomical cone beam CT study. Dentomaxillofacial Radiol. 2012;41:294–7.

    Google Scholar 

  60. 60.

    Mittal S, Singal S, Mittal A, Singal R, Jindal G. Identification of foramen of Huschke with reversible herniation of temporomandibular joint soft tissue into the external auditory canal on multidetector computed tomography. Proc (Bayl Univ Med Cent). 2017;30:92-3.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Lacout A, Marsot-Dupuch K, Smoker WRK, Lasjaunias P. Foramen tympanicum, or foramen of Huschke: pathologic cases and anatomic CT study. AJNR Am J Neuroradiol. 2005;26:1317–23.

    Google Scholar 

  62. 62.

    Cecire AA, Austin BW, Ng PK. Polyp of the external ear canal arising from the temporomandibular joint: a case report. J Otolaryngol. 1991;20:168–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Mihal DC, Feng Y, Kodet ML, Lohse CM, Carlson ML, Lane JI. Isolated internal auditory canal diverticula: a normal anatomic variant not associated with sensorineural hearing loss. AJNR Am J Neuroradiol. 2018;39:2340–4.

    CAS  Google Scholar 

  64. 64.

    Pippin KJ, Muelleman TJ, Hill J, Leever J, Staecker H, Ledbetter LN. Prevalence of internal auditory canal diverticulum and its association with hearing loss and otosclerosis. AJNR Am J Neuroradiol. 2017;38:2167–71.

    CAS  Google Scholar 

  65. 65.

    Wang F, Yoshida T, Shimono M, Sugimoto S, Teranishi M, Naganawa S, Sone M. Significance of internal auditory canal diverticula in ears with otosclerosis. Acta Otolaryngol. 2018;138:1066–9.

    Google Scholar 

  66. 66.

    Ho ML, Juliano A, Eisenberg RL, Moonis G. Anatomy and pathology of the facial nerve. AJR Am J Roentgenol. 2015;204:W612-9.

    Google Scholar 

  67. 67.

    Phillips CD, Bubash LA. The facial nerve: anatomy and common pathology. Semin Ultrasound CT MR. 2002;23:202–17.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Myckatyn TM, Mackinnon SE. A review of facial nerve anatomy. Semin Plast Surg. 2004;18:5–11.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Browning ST, Phillipps JJ, Williams N. Schwannoma of the chorda tympani nerve. J Laryngol Otol. 2000;114:81–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    De Paulis D, Di Cola F, Marzi S, Ricci A, Coletti G, Galzio RJ. A rare case of greater petrosal nerve schwannoma. Surg Neurol Int. 2011; 2:60.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Ginsberg LE, De Monte F, Gillenwater AM. Greater superficial petrosal nerve: anatomy and MR findings in perineural tumor spread. AJNR Am J Neuroradiol. 1996;17:389–93.

    CAS  Google Scholar 

  72. 72.

    Yue Y, Jin Y, Yang B, Yuan H, Li J, Wang Z. Retrospective case series of the imaging findings of facial nerve hemangioma. Eur Arch Otorhinolaryngol. 2015;272:2497–503.

    Google Scholar 

  73. 73.

    Rhoton AL, Buza R. Microsurgical anatomy of the jugular foramen. J Neurosurg. 1975;42:541–50.

    Google Scholar 

  74. 74.

    Rubinstein D, Burton BS, Walker AL. The anatomy of the inferior petrosal sinus, glossopharyngeal nerve, vagus nerve, and accessory nerve in the jugular foramen. AJNR Am J Neuroradiol. 1995;16:185–94.

    CAS  Google Scholar 

  75. 75.

    Tekdemir I, Aslan A, Tüccar E, Cubuk HE, Elhan A, Deda H. An anatomical study of the tympanic branch of the glossopharyngeal nerve (nerve of Jacobson). Ann Anat. 1998;180:349–52.

    CAS  Google Scholar 

  76. 76.

    Ong CK, Chong VF. The glossopharyngeal, vagus and spinal accessory nerves. Eur J Radiol. 2010;74:359–67.

    Google Scholar 

  77. 77.

    Rosen S. The tympanic plexus; an anatomic study. Arch Otolaryngol. 1950;52:15–8.

    CAS  Google Scholar 

  78. 78.

    Tubbs RS, Menendez J, Loukas M, Shoja MM, Shokouhi G, Salter EG, Cohen-Gadol A. The petrosal nerves: anatomy, pathology, and surgical considerations. Clin Anat. 2009;22:537–44.

    Google Scholar 

  79. 79.

    Kanzara T, Hall A, Virk JS, Leung B, Singh A. Clinical anatomy of the tympanic nerve: a review. World J Otorhinolaryngol. 2014;4:17–22.

    Google Scholar 

  80. 80.

    Singh VK, Badhwar S, D’Souza J, Indrajit IK. Glomus tympanicum. Med J Armed Forces India. 2004;60:200–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Sweeney AD, Carlson ML, Wanna GB, Bennett ML. Glomus tympanicum tumors. Otolaryngol Clin North Am. 2015;48:293–304.

    Google Scholar 

  82. 82.

    Mafee MF, Raofi B, Kumar A, Muscato C. Glomus faciale, glomus jugulare, glomus tympanicum, glomus vagale, carotid body tumors, and simulating lesions: role of MR imaging. Radiol Clin North Am. 2000;38:1059–76.

    CAS  Google Scholar 

  83. 83.

    Sullivan AM, Curtin HD, Moonis G. Arterial anomalies of the middle ear: a pictorial review with clinical-embryologic and imaging correlation. Neuroimaging Clin N Am. 2019;29:93–102.

    Google Scholar 

  84. 84.

    Casselman J, Mermuys K, Delanote J, Ghekiere J, Coenegrachts K. MRI of the cranial nerves—more than meets the eye: technical considerations and advanced anatomy. Neuroimaging Clin N Am. 2008;18:197–231.

    Google Scholar 

  85. 85.

    Caldemeyer KS, Mathews VP, Azzarelli B, Smith RR. The jugular foramen: a review of anatomy, masses, and imaging characteristics. RadioGraphics. 1997;17:1123–39.

    CAS  Google Scholar 

  86. 86.

    Tekdemir I, Aslan A, Elhan A. A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold’s ear-cough reflex. Surg Radiol Anat. 1998;20:253–7.

    CAS  Google Scholar 

  87. 87.

    Ryan NM, Gibson PG, Birring SS. Arnold’s nerve cough reflex: evidence for chronic cough as a sensory vagal neuropathy. J Thorac Dis. 2014;6:S748–52.

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Fukushima H, Hara H, Paparella MM, Oktay MF, Schachern PA, Cureoglu S. Bilateral glomus tympanicum tumors: human temporalbone study. Clin Pract. 2018;8:1035.

    PubMed  PubMed Central  Google Scholar 

Download references


Internal departmental funding was utilized without commercial sponsorship or support.

Author information



Corresponding author

Correspondence to John C. Benson.

Ethics declarations

Conflict of interest

J.C. Benson, L. Eckel, J. Guerin, V. M. Silvera, F. Diehn, T. Passe, M.L. Carlson and J.I. Lane declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benson, J.C., Eckel, L., Guerin, J. et al. Review of Temporal Bone Microanatomy. Clin Neuroradiol 30, 209–219 (2020).

Download citation


  • Temporal bone
  • Anatomy
  • Clefts
  • Canals
  • Nerves