Skip to main content

Advertisement

Log in

MR Neurography: Normative Values in Correlation to Demographic Determinants in Children and Adolescents

Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To determine normative morphological and functional magnetic resonance (MR) neurography values in children and adolescents in correlation to demographic determinants.

Methods

In this study 29 healthy underage subjects (mean age 13.9 years, range 10–17 years) were examined using a standardized MR neurography protocol of the lumbosacral plexus and the right lower extremity at 3 T. Volumes of the dorsal root ganglia L3–S2, cross-sectional area of the sciatic and tibial nerves, as well as T2-weighted contrast nerve-muscle ratio and quantitative diffusion tensor imaging (DTI) values of the sciatic nerve were obtained and correlated with the demographic parameters sex, age, height and weight.

Results

While all obtained morphological and functional MR neurography values did not differ between male and female sex, dorsal root ganglia volume, sciatic and tibial nerve cross-sectional area correlated positively with age, height, and weight. The T2-weighted signal of the sciatic nerve was independent of demographic determinants. Negative correlation was found for fractional anisotropy (FA) with age, height, and weight, whereas radial diffusivity (RD) showed a positive correlation only with age. Mean diffusivity (MD) and axial diffusivity (AD) revealed no correlation with demographic determinants.

Conclusion

The results of this study suggest that selection of sex-matched controls for further studies assessing peripheral nerve pathologies in underage patients may not be necessary; however, control subjects should be adapted to age, height, and weight of the patient population, especially if assessing dorsal root ganglia volume, nerve cross-sectional area and DTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Godel T, Bäumer P, Farschtschi S, Gugel I, Kronlage M, Hofstadler B, Heiland S, Gelderblom M, Bendszus M, Mautner VF. Peripheral nervous system alterations in infant and adult neurofibromatosis type 2. Neurology. 2019;93:e590–8.

    Article  PubMed  Google Scholar 

  2. Godel T, Bäumer P, Pham M, Köhn A, Muschol N, Kronlage M, Kollmer J, Heiland S, Bendszus M, Mautner VF. Human dorsal root ganglion in vivo morphometry and perfusion in Fabry painful neuropathy. Neurology. 2017;89:1274–82.

    Article  PubMed  Google Scholar 

  3. Godel T, Bäumer P, Stumpfe K, Muschol N, Kronlage M, Brunnée M, Kollmer J, Heiland S, Bendszus M, Mautner VF. Dorsal root ganglia volume is increased in patients with the Fabry-related GLA variant p.D313Y. J Neurol. 2019;266:1332-9.

    Article  PubMed  Google Scholar 

  4. Godel T, Köhn A, Muschol N, Kronlage M, Schwarz D, Kollmer J, Heiland S, Bendszus M, Mautner VF, Bäumer P. Dorsal root ganglia in vivo morphometry and perfusion in female patients with Fabry disease. J Neurol. 2018;265:2723-9.

    Article  PubMed  Google Scholar 

  5. Godel T, Mautner VF, Farschtschi S, Pham M, Schwarz D, Kronlage M, Gugel I, Heiland S, Bendszus M, Bäumer P. Dorsal root ganglia volume differentiates schwannomatosis and neurofibromatosis 2. Ann Neurol. 2018;83:854–7.

    Article  PubMed  Google Scholar 

  6. Kronlage M, Pitarokoili K, Schwarz D, Godel T, Heiland S, Yoon MS, Bendszus M, Bäumer P. Diffusion tensor imaging in chronic inflammatory demyelinating polyneuropathy: diagnostic accuracy and correlation with electrophysiology. Invest Radiol. 2017;52:701–7.

    Article  PubMed  Google Scholar 

  7. Pham M, Oikonomou D, Hornung B, Weiler M, Heiland S, Bäumer P, Kollmer J, Nawroth PP, Bendszus M. Magnetic resonance neurography detects diabetic neuropathy early and with proximal predominance. Ann Neurol. 2015;78:939–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kollmer J, Hund E, Hornung B, Hegenbart U, Schönland SO, Kimmich C, Kristen AV, Purrucker J, Röcken C, Heiland S, Bendszus M, Pham M. In vivo detection of nerve injury in familial amyloid polyneuropathy by magnetic resonance neurography. Brain. 2015;138(Pt 3):549–62.

    Article  PubMed  Google Scholar 

  9. Bäumer P, Mautner VF, Bäumer T, Schuhmann MU, Tatagiba M, Heiland S, Kaestel T, Bendszus M, Pham M. Accumulation of non-compressive fascicular lesions underlies NF2 polyneuropathy. J Neurol. 2013;260:38–46.

    Article  CAS  PubMed  Google Scholar 

  10. Godel T, Pham M, Kele H, Kronlage M, Schwarz D, Brunée M, Heiland S, Bendszus M, Bäumer P. Diffusion tensor imaging in anterior interosseous nerve syndrome—functional MR Neurography on a fascicular level. Neuroimage Clin. 2019;21:101659.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kronlage M, Schwehr V, Schwarz D, Godel T, Uhlmann L, Heiland S, Bendszus M, Bäumer P. Peripheral nerve diffusion tensor imaging (DTI): normal values and demographic determinants in a cohort of 60 healthy individuals. Eur Radiol. 2018;28:1801–8.

    Article  PubMed  Google Scholar 

  12. Naraghi AM, Awdeh H, Wadhwa V, Andreisek G, Chhabra A. Diffusion tensor imaging of peripheral nerves. Semin Musculoskelet Radiol. 2015;19:191–200.

    Article  PubMed  Google Scholar 

  13. Kallinikou D, Soldatou A, Tsentidis C, Louraki M, Kanaka-Gantenbein C, Kanavakis E, Karavanaki K. Diabetic neuropathy in children and adolescents with type 1 diabetes mellitus: diagnosis, pathogenesis, and associated genetic markers. Diabetes Metab Res Rev. 2019;13:e3178.

    Article  PubMed  Google Scholar 

  14. Kronlage M, Schwehr V, Schwarz D, Godel T, Heiland S, Bendszus M, Bäumer P. Magnetic resonance neurography : normal values and demographic determinants of nerve caliber and T2 relaxometry in 60 healthy individuals. Clin Neuroradiol. 2019;29:19–26.

    Article  PubMed  Google Scholar 

  15. Apostolidis L, Schwarz D, Xia A, Weiler M, Heckel A, Godel T, Heiland S, Schlemmer HP, Jäger D, Bendszus M, Bäumer P. Dorsal root ganglia hypertrophy as in vivo correlate of oxaliplatin-induced polyneuropathy. PLoS One. 2017;12:e183845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gadoth N, Sandbank U. Involvement of dorsal root ganglia in Fabry’s disease. J Med Genet. 1983;20:309–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Godel T, Pham M, Heiland S, Bendszus M, Bäumer P. Human dorsal-root-ganglion perfusion measured in-vivo by MRI. Neuroimage. 2016;141:81–7.

    Article  PubMed  Google Scholar 

  18. Kahn P. Anderson-Fabry disease: a histopathological study of three cases with observations on the mechanism of production of pain. J Neurol Neurosurg Psychiatry. 1973;36:1053–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaye EM, Kolodny EH, Logigian EL, Ullman MD. Nervous system involvement in Fabry’s disease: clinicopathological and biochemical correlation. Ann Neurol. 1988;23:505–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gehlhausen JR, Park SJ, Hickox AE, Shew M, Staser K, Rhodes SD, Menon K, Lajiness JD, Mwanthi M, Yang X, Yuan J, Territo P, Hutchins G, Nalepa G, Yang FC, Conway SJ, Heinz MG, Stemmer-Rachamimov A, Yates CW, Wade Clapp D. A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Hum Mol Genet. 2015;24:1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hasegawa T, Mikawa Y, Watanabe R, An HS. Morphometric analysis of the lumbosacral nerve roots and dorsal root ganglia by magnetic resonance imaging. Spine (Phila Pa 1976). 1996;21:1005-9.

    Article  CAS  PubMed  Google Scholar 

  22. West CA, McKay Hart A, Terenghi G, Wiberg M. Sensory neurons of the human brachial plexus: a quantitative study employing optical fractionation and in vivo volumetric magnetic resonance imaging. Neurosurgery. 2012;70:1183–94.

    Article  PubMed  Google Scholar 

  23. Cartwright MS, Passmore LV, Yoon JS, Brown ME, Caress JB, Walker FO. Cross-sectional area reference values for nerve ultrasonography. Muscle Nerve. 2008;37:566–71.

    Article  PubMed  Google Scholar 

  24. Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic findings of the normal ulnar nerve in adults. Arch Phys Med Rehabil. 2007;88:394–6.

    Article  PubMed  Google Scholar 

  25. Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic reference values for assessing the normal median nerve in adults. J Neuroimaging. 2009;19:47–51.

    Article  PubMed  Google Scholar 

  26. Kerasnoudis A, Pitarokoili K, Behrendt V, Gold R, Yoon MS. Cross sectional area reference values for sonography of peripheral nerves and brachial plexus. Clin Neurophysiol. 2013;124:1881–8.

    Article  PubMed  Google Scholar 

  27. Seok HY, Jang JH, Won SJ, Yoon JS, Park KS, Kim BJ. Cross-sectional area reference values of nerves in the lower extremities using ultrasonography. Muscle Nerve. 2014;50:564–70.

    Article  PubMed  Google Scholar 

  28. Won SJ, Kim BJ, Park KS, Yoon JS, Choi H. Reference values for nerve ultrasonography in the upper extremity. Muscle Nerve. 2013;47:864–71.

    Article  PubMed  Google Scholar 

  29. Cartwright MS, Mayans DR, Gillson NA, Griffin LP, Walker FO. Nerve cross-sectional area in extremes of age. Muscle Nerve. 2013;47:890–3.

    Article  PubMed  Google Scholar 

  30. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics. 2006;26(Suppl 1):S205–23.

    Article  PubMed  Google Scholar 

  32. Guggenberger R, Markovic D, Eppenberger P, Chhabra A, Schiller A, Nanz D, Prüssmann K, Andreisek G.Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology. 2012;265:194–203.

    Article  PubMed  Google Scholar 

  33. Breckwoldt MO, Stock C, Xia A, Heckel A, Bendszus M, Pham M, Heiland S, Bäumer P. Diffusion tensor imaging adds diagnostic accuracy in magnetic resonance neurography. Invest Radiol. 2015;50:498–504.

    Article  CAS  PubMed  Google Scholar 

  34. Hiltunen J, Suortti T, Arvela S, Seppä M, Joensuu R, Hari R. Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T. Clin Neurophysiol. 2005;116:2315–23.

    Article  PubMed  Google Scholar 

  35. Hiltunen J, Kirveskari E, Numminen J, Lindfors N, Göransson H, Hari R. Pre- and post-operative diffusion tensor imaging of the median nerve in carpal tunnel syndrome. Eur Radiol. 2012;22:1310–9.

    Article  PubMed  Google Scholar 

  36. Bäumer P, Pham M, Ruetters M, Heiland S, Heckel A, Radbruch A, Bendszus M, Weiler M. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology. 2014;273:185–93.

    Article  PubMed  Google Scholar 

  37. Heckel A, Weiler M, Xia A, Ruetters M, Pham M, Bendszus M, Heiland S, Baeumer P. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS One. 2015;10:e0130833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Budde MD, Kim JH, Liang HF, Schmidt RE, Russell JH, Cross AH, Song SK. Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med. 2007;57:688–95.

    Article  PubMed  Google Scholar 

  39. DeBoy CA, Zhang J, Dike S, Shats I, Jones M, Reich DS, Mori S, Nguyen T, Rothstein B, Miller RH, Griffin JT, Kerr DA, Calabresi PA. High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain. 2007;130(Pt 8):2199–210.

    Article  PubMed  Google Scholar 

  40. Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology. 2011;53:367–72.

    Article  PubMed  Google Scholar 

  41. Ugrenović S, Jovanović I, Vasović L, Kundalić B, Čukuranović R, Stefanović V. Morphometric analysis of the diameter and g‑ratio of the myelinated nerve fibers of the human sciatic nerve during the aging process. Anat Sci Int. 2016;91:238–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all subjects for their valuable cooperation in this study. T.G. is supported by a postdoctoral fellowship from the Medical Faculty of the University of Heidelberg and received a research grant from Amicus Therapeutics. M.B. received grants from the German Research Council (SFB 1158). S.H. was supported by a grant from the German Research Council (SFB 1118).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Godel.

Ethics declarations

Conflict of interest

B. Hofstadler, P. Bäumer, D. Schwarz, M. Kronlage, S. Heiland, M. Bendszus and T. Godel declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofstadler, B., Bäumer, P., Schwarz, D. et al. MR Neurography: Normative Values in Correlation to Demographic Determinants in Children and Adolescents. Clin Neuroradiol 30, 671–677 (2020). https://doi.org/10.1007/s00062-019-00834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-019-00834-9

Keywords

Navigation