Improved Brachial Plexus Visualization Using an Adiabatic iMSDE-Prepared STIR 3D TSE

Abstract

Purpose

The close proximity of blood vessels to the brachial plexus nerves can confound nerve visualization in conventional fat-suppressed 3D T2-weighted sequences. Vessel suppression can be accomplished by means of motion-sensitizing preparation. The aim of this study was to qualitatively and semi-quantitatively evaluate short tau inversion recovery (STIR) 3D turbo spin echo (TSE) in conjunction with an adiabatic T2 preparation incorporating motion sensitization for magnetic resonance neurography (MRN) of the brachial plexus in a clinical routine setting.

Methods

The MRN of the brachial plexus was performed in 22 patients (age 45.5 ± 20.3 years) with different clinical implications using the proposed improved motion-sensitized driven equilibrium (iMSDE) STIR 3D TSE and the STIR 3D TSE. Images were evaluated regarding image quality, overall artifacts, artifacts caused by vessel signal, signal homogeneity, visibility of small nerves and signal contrast. Furthermore, signal-to-noise ratios (aSNR), nerve muscle contrast to noise ratios (aNMCNR) and nerve vessel contrast to noise ratios (aNVCNR) were calculated and compared.

Results

The incorporation of motion sensitization in the T2 preparation resulted in robust blood suppression across subjects, leading to significantly higher aNVCNRs (p < 0.001) and aNMCNRs (p < 0.05), increased conspicuousness of the nerves, better vessel suppression and image quality and less artifacts compared with STIR 3D TSE (p < 0.001).

Conclusion

The incorporation of the proposed adiabatic iMSDE-based motion sensitization was shown to provide robust blood suppression of vessels in close proximity to brachial plexus nerves. The use of STIR iMSDE 3D TSE can be considered for clinical MRN examinations of the brachial plexus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society--first revision. J Peripher Nerv Syst. 2010;15:295–301.

    Article  Google Scholar 

  2. 2.

    Joint Task Force of the EFNS and the PNS.European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society--first revision. J Peripher Nerv Syst. 2010;15:185–95.

    Article  Google Scholar 

  3. 3.

    Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society--First Revision. J Peripher Nerv Syst. 2010;15:1–9.

    Article  Google Scholar 

  4. 4.

    Gooch CL, Weimer LH. The electrodiagnosis of neuropathy: basic principles and common pitfalls. Neurol Clin. 2007;25:1–28.

    Article  PubMed  Google Scholar 

  5. 5.

    Du R, Auguste KI, Chin CT, Engstrom JW, Weinstein PR. Magnetic resonance neurography for the evaluation of peripheral nerve, brachial plexus, and nerve root disorders. J Neurosurg. 2010;112:362–71.

    Article  Google Scholar 

  6. 6.

    Martinoli C, Gandolfo N, Perez MM, Klauser A, Palmieri F, Padua L, Tagliafico A. Brachial plexus and nerves about the shoulder. Semin Musculoskelet Radiol. 2010;14:523–46.

    Article  PubMed  Google Scholar 

  7. 7.

    Tagliafico A, Succio G, Emanuele Neumaier C, Serafini G, Ghidara M, Calabrese M, Martinoli C. MR imaging of the brachial plexus: comparison between 1.5-T and 3‑T MR imaging: preliminary experience. Skeletal Radiol. 2011;40:717–24.

    Article  Google Scholar 

  8. 8.

    Chhabra A, Lee PP, Bizzell C, Soldatos T. 3 tesla MR neurography—technique, interpretation, and pitfalls. Skeletal Radiol. 2011;40:1249–60.

    Article  Google Scholar 

  9. 9.

    Hiwatashi A, Togao O, Yamashita K, Kikuchi K, Ogata H, Yamasaki R, Yoneyama M, Kira JI, Honda H. Evaluation of chronic inflammatory demyelinating polyneuropathy: 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (3D SHINKEI). Eur Radiol. 2017;27:447–53.

    Article  Google Scholar 

  10. 10.

    Schwarz D, Kele H, Kronlage M, Godel T, Hilgenfeld T, Bendszus M, Bäumer P. Diagnostic value of magnetic resonance neurography in cervical radiculopathy: plexus patterns and peripheral nerve lesions. Invest Radiol. 2018;53:158–66.

    Article  Google Scholar 

  11. 11.

    Gerevini S, Agosta F, Riva N, Spinelli EG, Pagani E, Caliendo G, Chaabane L, Copetti M, Quattrini A, Comi G, Falini A, Filippi M. MR imaging of brachial plexus and limb-girdle muscles in patients with amyotrophic lateral sclerosis. Radiology. 2016;279:553–61.

    Article  Google Scholar 

  12. 12.

    Madhuranthakam AJ, Lenkinski RE. Technical advancements in MR neurography. Semin Musculoskelet Radiol. 2015;19:86–93.

    Article  Google Scholar 

  13. 13.

    Viallon M, Vargas MI, Jlassi H, Lövblad KO, Delavelle J. High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging. Eur Radiol. 2008;18:1018–23.

    CAS  Article  Google Scholar 

  14. 14.

    Vargas MI, Viallon M, Nguyen D, Beaulieu JY, Delavelle J, Becker M. New approaches in imaging of the brachial plexus. Eur J Radiol. 2010;74:403–10.

    CAS  Article  Google Scholar 

  15. 15.

    Chhabra A, Thawait GK, Soldatos T, Thakkar RS, Del Grande F, Chalian M, Carrino JA. High-resolution 3T MR neurography of the brachial plexus and its branches, with emphasis on 3D imaging. AJNR Am J Neuroradiol. 2013;34:486–97.

    CAS  Article  Google Scholar 

  16. 16.

    Oudeman J, Coolen BF, Mazzoli V, Maas M, Verhamme C, Brink WM, Webb AG, Strijkers GJ, Nederveen AJ. Diffusion-prepared neurography of the brachial plexus with a large field-of-view at 3T. J Magn Reson Imaging. 2016;43:644–654.

    Article  Google Scholar 

  17. 17.

    Chhabra A, Zhao L, Carrino JA, Trueblood E, Koceski S, Shteriev F, Lenkinski L, Sinclair CD, Andreisek G. MR neurography: advances. Radiol Res Pract. 2013;2013:809568.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Cervantes B, Kirschke JS, Klupp E, Kooijman H, Börnert P, Haase A, Rummeny EJ, Karampinos DC. Orthogonally combined motion- and diffusion-sensitized driven equilibrium (OC-MDSDE) preparation for vessel signal suppression in 3D turbo spin echo imaging of peripheral nerves in the extremities. Magn Reson Med. 2018;79:407–415.

    Article  Google Scholar 

  19. 19.

    Kasper JM, Wadhwa V, Scott KM, Rozen S, Xi Y, Chhabra A. SHINKEI—a novel 3D isotropic MR neurography technique: technical advantages over 3DIRTSE-based imaging. Eur Radiol. 2015;25:1672–7.

    Article  PubMed  Google Scholar 

  20. 20.

    Yoneyama M, Nakumara M, Okukari T, Tabuchi T, Takemura A, Obara M, Ogura J. High-resolution 3D volumetric nerve-sheath weighted RARE imaging (3D SHINKEI). In: Proceedings of the 19th annual meeting of ISMRM. 2011. p. 2721.

    Google Scholar 

  21. 21.

    Yoneyama M, Takahara T, Kwee TC, Nakamura M, Tabuchi T. Rapid high resolution MR neurography with a diffusion-weighted pre-pulse. Magn Reson Med Sci. 2013;12:111–9.

    Article  Google Scholar 

  22. 22.

    Jenista ER, Rehwald WG, Chen EL, Kim HW, Klem I, Parker MA, Kim RJ. Motion and flow insensitive adiabatic T2-preparation module for cardiac MR imaging at 3 Tesla. Magn Reson Med. 2013;70:1360–8.

    Article  Google Scholar 

  23. 23.

    Nezafat R, Ouwerkerk R, Derbyshire AJ, Stuber M, McVeigh ER. Spectrally selective B1-insensitive T2 magnetization preparation sequence. Magn Reson Med. 2009;61:1326–35.

    Article  PubMed  Google Scholar 

  24. 24.

    Weidlich D, Schlaeger S, Kooijman H, Börnert P, Kirschke JS, Rummeny EJ, Haase A, Karampinos DC. T2 mapping with magnetization-prepared 3D TSE based on a modified BIR-4 T2 preparation. NMR Biomed. Epub 2017 Aug 4.

  25. 25.

    Cervantes B. High-resolution DWI of the lumbar plexus using B1-insensitive velocity-compensated diffusion-prepared 3D TSE. In: Proceedings of the 24th annual meeting of ISMRM. 2016.

    Google Scholar 

  26. 26.

    Wang X, Harrison C, Mariappan YK, Gopalakrishnan K, Chhabra A, Lenkinski RE, Madhuranthakam AJ. MR neurography of brachial plexus at 3.0 T with robust fat and blood suppression. Radiology. 2017;283:538–46.

    Article  PubMed  Google Scholar 

  27. 27.

    Mürtz P, Kaschner M, Lakghomi A, Gieseke J, Willinek WA, Schild HH, Thomas D. Diffusion-weighted MR neurography of the brachial and lumbosacral plexus: 3.0 T versus 1.5 T imaging. Eur J Radiol. 2015;84:696–702.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

The present work was partially supported by Philips Healthcare and the European Union (ERC-StG 2014 iBack).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Klupp.

Ethics declarations

Conflict of interest

E. Klupp, B. Cervantes, N. Sollmann, F. Treibel, D. Weidlich, T. Baum, E.J. Rummeny, C. Zimmer, J.S. Kirschke and D.C. Karampinos declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klupp, E., Cervantes, B., Sollmann, N. et al. Improved Brachial Plexus Visualization Using an Adiabatic iMSDE-Prepared STIR 3D TSE. Clin Neuroradiol 29, 631–638 (2019). https://doi.org/10.1007/s00062-018-0706-0

Download citation

Keywords

  • MR neurography
  • Brachial plexus
  • 3-D Imaging
  • Fat suppression
  • Vessel suppression