Skip to main content
Log in

Investigation of Neurodegenerative Processes in Amyotrophic Lateral Sclerosis Using White Matter Fiber Density

Clinical Neuroradiology Aims and scope Submit manuscript

Cite this article

Abstract

In the current work two novel parameters, fiber density (FD) and mean diffusion signal (MDS) are investigated for evaluating neurodegenerative processes in amyotrophic lateral sclerosis (ALS). The MDS provides a measure of the FD but is derived directly from the diffusion signal. Using tract-based spatial statistics (TBSS), pathological changes across the entire white matter and changes in the parameters over time were evaluated. The results were related to those obtained using the fractional anisotropy (FA) value. A widespread pattern of significantly decreased FD and MDS values was observed. A strong trend towards statistical significance was seen in similar white matter structures using TBSS analysis based on the FA value. Longitudinal analysis of the FD values demonstrated continuing deterioration of the same fiber tracts that were shown to be impaired in the group analysis. The findings suggest that MDS and in particular FD show great promise for evaluating microstructural white matter changes in ALS and may be more sensitive than the more commonly used FA value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beghi E, Logroscino G, Chiò A, Hardiman O, Mitchell D, Swingler R, Traynor BJ; EURALS Consortium. The epidemiology of ALS and the role of population-based registries. Biochim Biophys Acta. 2006;1762:1150–7.

    Article  CAS  PubMed  Google Scholar 

  2. Agosta F1, Chiò A, Cosottini M, De Stefano N, Falini A, Mascalchi M, Rocca MA, Silani V, Tedeschi G, Filippi M. The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2010;31:1769–77.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chiò A, Pagani M, Agosta F, Calvo A, Cistaro A, Filippi M. Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol. 2014;13:1228–40.

    Article  PubMed  Google Scholar 

  4. Turner MR, Agosta F, Bede P, Govind V, Lulé D, Verstraete E. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med. 2012;6:319–37.

    Article  CAS  PubMed  Google Scholar 

  5. Grolez G, Moreau C, Danel-Brunaud V, Delmaire C, Lopes R, Pradat PF, El Mendili MM, Defebvre L, Devos D. The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review. BMC Neurol. 2016;16:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beaulieu C, Does MD, Snyder RE, Allen PS. Changes in water diffusion due to Wallerian degeneration in peripheral nerve. Magn Reson Med. 1996;36:627–31.

    Article  CAS  PubMed  Google Scholar 

  7. Ciccarelli O, Behrens TE, Altmann DR, Orrell RW, Howard RS, Johansen-Berg H, Miller DH, Matthews PM, Thompson AJ. Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain. 2006;129:1859–71.

    Article  CAS  PubMed  Google Scholar 

  8. Concha L, Livy DJ, Beaulieu C, Wheatley BM, Gross DW. In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. J Neurosci. 2010;30:996–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mädler B1, Drabycz SA, Kolind SH, Whittall KP, MacKay AL. Is diffusion anisotropy an accurate monitor of myelination? Magn Reson Imaging. 2008;26:874–88.

    Article  PubMed  Google Scholar 

  10. Aoki S, Iwata NK, Masutani Y, Yoshida M, Abe O, Ugawa Y, Masumoto T, Mori H, Hayashi N, Kabasawa H, Kwak S, Takahashi S, Tsuji S, Ohtomo K. Quantitative evaluation of the pyramidal tract segmented by diffusion tensor tractography: feasibility study in patients with amyotrophic lateral sclerosis. Radiat Med. 2005;23:195–9.

    PubMed  Google Scholar 

  11. Cosottini M, Giannelli M, Siciliano G, Lazzarotti G, Michelassi MC, Del Corona A, Bartolozzi C, Murri L. Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy. Radiology. 2005;237:258–64.

    Article  PubMed  Google Scholar 

  12. Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, Horsfield MA. Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology. 1999;53:1051–8.

    Article  CAS  PubMed  Google Scholar 

  13. Graham JM, Papadakis N, Evans J, Widjaja E, Romanowski CA, Paley MN, Wallis LI, Wilkinson ID, Shaw PJ, Griffiths PD. Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology. 2004;63:2111–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hong YH, Sung JJ, Kim SM, Park KS, Lee KW, Chang KH, Song IC. Diffusion tensor tractography-based analysis of the pyramidal tract in patients with amyotrophic lateral sclerosis. J Neuroimaging. 2008;18:282–7.

    Article  PubMed  Google Scholar 

  15. Iwata NK, Aoki S, Okabe S, Arai N, Terao Y, Kwak S, Abe O, Kanazawa I, Tsuji S, Ugawa Y. Evaluation of corticospinal tracts in ALS with diffusion tensor MRI and brainstem stimulation. Neurology. 2008;70:528–32.

    Article  CAS  PubMed  Google Scholar 

  16. Karlsborg M, Rosenbaum S, Wiegell M, Simonsen H, Larsson H, Werdelin L, Gredal O. Corticospinal tract degeneration and possible pathogenesis in ALS evaluated by MR diffusion tensor imaging. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5:136–40.

    Article  PubMed  Google Scholar 

  17. Roccatagliata L, Bonzano L, Mancardi G, Canepa C, Caponnetto C. Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10:47–52.

    Article  PubMed  Google Scholar 

  18. Sach M, Winkler G, Glauche V, Liepert J, Heimbach B, Koch MA, Büchel C, Weiller C. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain. 2004;127:340–50.

    Article  PubMed  Google Scholar 

  19. Sage CA, Peeters RR, Görner A, Robberecht W, Sunaert S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage. 2007;34:486–99.

    Article  PubMed  Google Scholar 

  20. Sarica A, Cerasa A, Valentino P, Yeatman J, Trotta M, Barone S, Granata A, Nisticò R, Perrotta P, Pucci F, Quattrone A. The corticospinal tract profile in amyotrophic lateral sclerosis. Hum Brain Mapp. 2017;38:727–39.

    Article  PubMed  Google Scholar 

  21. Schimrigk SK, Bellenberg B, Schlüter M, Stieltjes B, Drescher R, Rexilius J, Lukas C, Hahn HK, Przuntek H, Köster O. Diffusion tensor imaging-based fractional anisotropy quantification in the corticospinal tract of patients with amyotrophic lateral sclerosis using a probabilistic mixture model. AJNR Am J Neuroradiol. 2007;28:724–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong JC, Concha L, Beaulieu C, Johnston W, Allen PS, Kalra S. Spatial profiling of the corticospinal tract in amyotrophic lateral sclerosis using diffusion tensor imaging. J Neuroimaging. 2007;17:234–40.

    Article  PubMed  Google Scholar 

  23. Turner MR, Modo M. Advances in the application of MRI to amyotrophic lateral sclerosis. Expert Opin Med Diagn. 2010;4:483–96.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abe O, Yamada H, Masutani Y, Aoki S, Kunimatsu A, Yamasue H, Fukuda R, Kasai K, Hayashi N, Masumoto T, Mori H, Soma T, Ohtomo K. Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis. NMR Biomed. 2004;17:411–6.

    Article  PubMed  Google Scholar 

  25. Agosta F, Pagani E, Rocca MA, Caputo D, Perini M, Salvi F, Prelle A, Filippi M. Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Hum Brain Mapp. 2007;28:1430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sage CA, Van Hecke W, Peeters R, Sijbers J, Robberecht W, Parizel P, Marchal G, Leemans A, Sunaert S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited. Hum Brain Mapp. 2009;30:3657–75.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Senda J, Kato S, Kaga T, Ito M, Atsuta N, Nakamura T, Watanabe H, Tanaka F, Naganawa S, Sobue G. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study. Amyotroph Lateral Scler. 2011;12:59–69.

    Article  PubMed  Google Scholar 

  28. Thivard L, Pradat PF, Lehéricy S, Lacomblez L, Dormont D, Chiras J, Benali H, Meininger V. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability. J Neurol Neurosurg Psychiatr. 2007;78:889–92.

    Article  Google Scholar 

  29. van der Graaff MM, Sage CA, Caan MW, Akkerman EM, Lavini C, Majoie CB, Nederveen AJ, Zwinderman AH, Vos F, Brugman F, van den Berg LH, de Rijk MC, van Doorn PA, Van Hecke W, Peeters RR, Robberecht W, Sunaert S, de Visser M. Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study. Brain. 2011;134:1211–28.

    Article  Google Scholar 

  30. Ciccarelli O, Behrens TE, Johansen-Berg H, Talbot K, Orrell RW, Howard RS, Nunes RG, Miller DH, Matthews PM, Thompson AJ, Smith SM. Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics. Hum Brain Mapp. 2009;30:615–24.

    Article  PubMed  Google Scholar 

  31. Filippini N, Douaud G, Mackay CE, Knight S, Talbot K, Turner MR. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology. 2010;75:1645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Metwalli NS, Benatar M, Nair G, Usher S, Hu X, Carew JD. Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res. 2010;1348:156–64.

    Article  CAS  PubMed  Google Scholar 

  33. Prudlo J, Bißbort C, Glass A, Grossmann A, Hauenstein K, Benecke R, Teipel SJ. White matter pathology in ALS and lower motor neuron ALS variants: a diffusion tensor imaging study using tract-based spatial statistics. J Neurol. 2012;259:1848–59.

    Article  PubMed  Google Scholar 

  34. Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL. Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med. 2001;45:770–80.

    Article  CAS  PubMed  Google Scholar 

  35. Alexander DC, Barker GJ, Arridge SR. Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med. 2002;48:331–40.

    Article  CAS  PubMed  Google Scholar 

  36. Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2001;45:935–9.

    Article  CAS  PubMed  Google Scholar 

  37. Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2002;47:1083–99.

    Article  PubMed  Google Scholar 

  38. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48:577–82.

    Article  PubMed  Google Scholar 

  39. Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747–66.

    Article  PubMed  Google Scholar 

  40. Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, Alexander DC. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage. 2012;59:2241–54.

    Article  PubMed  Google Scholar 

  41. Winston GP. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg. 2012;2:254–65.

    PubMed  PubMed Central  Google Scholar 

  42. Daducci A, Dal Palù A, Lemkaddem A, Thiran JP. COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging. 2015;34:246–57.

    Article  PubMed  Google Scholar 

  43. Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A. Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 2012;59:3976–94.

    Article  PubMed  Google Scholar 

  44. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487–505.

    Article  PubMed  Google Scholar 

  45. Brooks BR, Miller RG, Swash M, Munsat TL; World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.

    Article  CAS  PubMed  Google Scholar 

  46. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci. 1999;169:13–21.

    Article  CAS  PubMed  Google Scholar 

  47. Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med. 1999;42:515–25.

    Article  CAS  PubMed  Google Scholar 

  48. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782–90.

    Article  PubMed  Google Scholar 

  50. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78.

    Article  PubMed  Google Scholar 

  51. Tournier JD, Calamante F, Connelly A. MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol. 2012;22:53–66.

    Article  Google Scholar 

  52. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97.

    Article  PubMed  Google Scholar 

  53. Bowser R, Turner MR, Shefner J. Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations. Nat Rev Neurol. 2011;7:631–8.

    Article  CAS  PubMed  Google Scholar 

  54. Turner MR, Grosskreutz J, Kassubek J, Abrahams S, Agosta F, Benatar M, Filippi M, Goldstein LH, van den Heuvel M, Kalra S, Lulé D, Mohammadi B; first Neuroimaging Symosium in ALS (NISALS). Towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurol. 2011;10:400–3.

    Article  PubMed  Google Scholar 

  55. Turner MR, Kiernan MC, Leigh PN, Talbot K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol. 2009;8:94–109.

    Article  CAS  PubMed  Google Scholar 

  56. Abrahams S, Goldstein LH, Suckling J, Ng V, Simmons A, Chitnis X, Atkins L, Williams SC, Leigh PN. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol. 2005;252:321–31.

    Article  PubMed  Google Scholar 

  57. Agosta F, Pagani E, Petrolini M, Caputo D, Perini M, Prelle A, Salvi F, Filippi M. Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. AJNR Am J Neuroradiol. 2010;31:1457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van der Graaff MM, de Jong JM, Baas F, de Visser M. Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: a clinical and brain imaging review. Neuromuscul Disord. 2009;19:53–8.

    Article  PubMed  Google Scholar 

  59. Udaka F, Kameyama M, Tomonaga M. Degeneration of Betz cells in motor neuron disease. A Golgi study. Acta Neuropathol. 1986;70:289–95.

    Article  CAS  PubMed  Google Scholar 

  60. Calamante F, Smith RE, Tournier JD, Raffelt D, Connelly A. Quantification of voxel-wise total fibre density: investigating the problems associated with track-count mapping. Neuroimage. 2015;117:284–93.

    Article  PubMed  Google Scholar 

  61. Moore E, Schaefer RS, Bastin ME, Roberts N, Overy K. Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training. Brain Cogn. 2017;116:40–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Keil C, Prell T, Peschel T, Hartung V, Dengler R, Grosskreutz J. Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis. BMC Neurosci. 2012;13:141.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nickerson JP1, Koski CJ, Boyer AC, Burbank HN, Tandan R, Filippi CG. Linear longitudinal decline in fractional anisotropy in patients with amyotrophic lateral sclerosis: preliminary results. Klin Neuroradiol. 2009;19:129–34.

    Article  Google Scholar 

  64. Blain CR, Williams VC, Johnston C, Stanton BR, Ganesalingam J, Jarosz JM, Jones DK, Barker GJ, Williams SC, Leigh NP, Simmons A. A longitudinal study of diffusion tensor MRI in ALS. Amyotroph Lateral Scler. 2007;8:348–55.

    Article  PubMed  Google Scholar 

  65. Mitsumoto H, Ulug AM, Pullman SL, Gooch CL, Chan S, Tang MX, Mao X, Hays AP, Floyd AG, Battista V, Montes J, Hayes S, Dashnaw S, Kaufmann P, Gordon PH, Hirsch J, Levin B, Rowland LP, Shungu DC. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology. 2007;68:1402–10.

    Article  CAS  PubMed  Google Scholar 

  66. Chapman MC, Jelsone-Swain L, Johnson TD, Gruis KL, Welsh RC. Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis. J Magn Reson Imaging. 2014;39:641–7.

    Article  PubMed  Google Scholar 

  67. Wang S, Poptani H, Woo JH, Desiderio LM, Elman LB, McCluskey LF, Krejza J, Melhem ER. Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T. Radiology. 2006;239:831–8.

    Article  PubMed  Google Scholar 

  68. Hong YH, Lee KW, Sung JJ, Chang KH, Song IC. Diffusion tensor MRI as a diagnostic tool of upper motor neuron involvement in amyotrophic lateral sclerosis. J Neurol Sci. 2004;227:73–8.

    Article  PubMed  Google Scholar 

  69. Rose S, Pannek K, Bell C, Baumann F, Hutchinson N, Coulthard A, McCombe P, Henderson R. Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study. Neuroimage. 2012;59:2661–9.

    Article  PubMed  Google Scholar 

  70. Toosy AT, Werring DJ, Orrell RW, Howard RS, King MD, Barker GJ, Miller DH, Thompson AJ. Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatr. 2003;74:1250–7.

    Article  CAS  Google Scholar 

  71. Swash M, Scholtz CL, Vowles G, Ingram DA. Selective and asymmetric vulnerability of corticospinal and spinocerebellar tracts in motor neuron disease. J Neurol Neurosurg Psychiatr. 1988;51:785–9.

    Article  CAS  Google Scholar 

Download references

Funding

This is an EU Joint Programme Neurodegenerative Disease Research (JPND) project. The project is supported through the following funding organizations under the aegis of JPND www.jpnd.eu: France, Agence Nationale de la Recherche; Germany, Bundesministerium für Bildung und Forschung; Ireland, Health Research Board; Italy, Ministero della Salute; The Netherlands, The Netherlands Organisation for Health Research and Development; Poland, Narodowe Centrum Badań i Rozwoju; Portugal, Fundação a Ciência e a Tecnologia; Spain, Ministerio de Ciencia e Innovación; Switzerland, Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung; Turkey, Tübitak; United Kingdom, Medical Research Council. SNF Grant 31ND30_141622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Stämpfli.

Ethics declarations

Conflict of interest

P. Stämpfli, S. Sommer, D. Czell, S. Kozerke, C. Neuwirth, M. Weber, S. Sartoretti-Schefer, E. Seifritz, A. Gutzeit and C. Reischauer declare that they have no competing interests.

Ethical standards

All procedures described in this article were carried out in accordance with national law and the Helsinki Declaration of 1964 (in its current revised form). Informed consent was obtained from all patients included in the study.

Additional information

P. Stämpfli and S. Sommer contributed equally to the manuscript.

Caption Electronic Supplementary Material

62_2018_670_MOESM1_ESM.docx

In the supplementary material section 1, more details about data processing steps and FD computation can be found. Section 2 describes the TBSS analysis steps for analysing FA, FD and MDS maps in more detail. A mathematical derivation of the relationship between the MDS and the FD is provided in section 3.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stämpfli, P., Sommer, S., Czell, D. et al. Investigation of Neurodegenerative Processes in Amyotrophic Lateral Sclerosis Using White Matter Fiber Density. Clin Neuroradiol 29, 493–503 (2019). https://doi.org/10.1007/s00062-018-0670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-018-0670-8

Keywords

Navigation