Skip to main content
Log in

Magnetic Resonance Neurography

Normal Values and Demographic Determinants of Nerve Caliber and T2 Relaxometry in 60 healthy individuals

Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To establish normal values and to identify demographic determinants of quantitative biomarkers in magnetic resonance neurography (MRN).

Methods

In this study 60 healthy individuals (5 men and 5 women of every decade between 20 and 80 years) were examined according to a standardized MRN protocol at 3 T, including multiecho T2 relaxometry. Nerve cross-sectional area (CSA), transverse relaxation time (T2), and proton spin density (PSD) were assessed for the sciatic, tibial, median, ulnar, and radial nerves. Correlation with demographic variables, such as height, weight, body mass index (BMI), and age was expressed by Pearson coefficients and t‑tests were used to compare MRN biomarkers between men and women with and without normalization to body weight and BMI by linear regression.

Results

The average nerve CSA correlated moderately with height (r = 0.28, p = 0.04), weight (r = 0.40, p = 0.002), and BMI (r = 0.35, p = 0.008), but not with age (r = 0.23, p = 0.09). While T2 did not correlate with demographic parameters, PSD was strongly inversely associated with BMI (r = −0.64, p < 0.001) and weight (r = −0.557, p < 0.001). Sex-dependent differences in imaging marker values were found for CSA but became negligible after normalization to body weight.

Conclusion

Quantitative biomarkers of MRN co-vary with demographic variables. As particularly important determinants, we identified body weight for nerve CSA and BMI for PSD. The presented normal values and demographic determinants may assist investigations into the potential of MRN biomarkers in further disease-specific studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Pham M, Bäumer T, Bendszus M. Peripheral nerves and plexus: imaging by MR-neurography and high-resolution ultrasound. Curr Opin Neurol. 2014;27(4):370–9.

    Article  Google Scholar 

  2. Bäumer P, Mautner VF, Bäumer T, Schuhmann MU, Tatagiba M, Heiland S, Kaestel T, Bendszus M, Pham M. Accumulation of non-compressive fascicular lesions underlies NF2 polyneuropathy. J Neurol. 2013;260(1):38–46.

    Article  CAS  Google Scholar 

  3. Shibuya K, Sugiyama A, Ito S, Misawa S, Sekiguchi Y, Mitsuma S, Iwai Y, Watanabe K, Shimada H, Kawaguchi H, Suhara T, Yokota H, Matsumoto H, Kuwabara S. Reconstruction magnetic resonance neurography in chronic inflammatory demyelinating polyneuropathy. Ann Neurol. 2015;77(2):333–7.

    Article  Google Scholar 

  4. Chhabra A, Belzberg AJ, Rosson GD, Thawait GK, Chalian M, Farahani SJ, Shores JT, Deune G, Hashemi S, Thawait SK, Subhawong TK, Carrino JA. Impact of high resolution 3 tesla MR neurography (MRN) on diagnostic thinking and therapeutic patient management. Eur Radiol. 2016;26(5):1235–44.

    Article  Google Scholar 

  5. Kollmer J, Bendszus M, Pham M. MR Neurography: diagnostic imaging in the PNS. Clin Neuroradiol. 2015;25(Suppl 2):283–9.

    Article  Google Scholar 

  6. Kronlage M, Pitarokoili K, Schwarz D, Godel T, Heiland S, Yoon MS, Bendszus M, Bäumer P. Diffusion tensor imaging in chronic inflammatory demyelinating polyneuropathy: diagnostic accuracy and correlation with electrophysiology. Invest Radiol. 2017 Jun 1. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  7. Hobson-Webb LD, Padua L. Ultrasound of focal neuropathies. J Clin Neurophysiol. 2016;33(2):94–102.

    Article  Google Scholar 

  8. Pham M, Oikonomou D, Hornung B, Weiler M, Heiland S, Bäumer P, Kollmer J, Nawroth PP, Bendszus M. Magnetic resonance neurography detects diabetic neuropathy early and with proximal predominance. Ann Neurol. 2015;78(6):939–48.

    Article  CAS  Google Scholar 

  9. Bäumer P, Pham M, Ruetters M, Heiland S, Heckel A, Radbruch A, Bendszus M, Weiler M. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology. 2014;273(1):185–93.

    Article  Google Scholar 

  10. Kollmer J, Hund E, Hornung B, Hegenbart U, Schönland SO, Kimmich C, Kristen AV, Purrucker J, Röcken C, Heiland S, Bendszus M, Pham M. In vivo detection of nerve injury in familial amyloid polyneuropathy by magnetic resonance neurography. Brain. 2015;138(Pt 3):549–62.

    Article  Google Scholar 

  11. MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med. 1994;31(6):673–7.

    Article  CAS  Google Scholar 

  12. Tofts P. Proton density of tissue water. In: Tofts P, editor. Quantitative MRI of the brain: measuring changes caused by disease. Hoboken: John Wiley & Sons; 2003. pp. 83–108.

    Chapter  Google Scholar 

  13. Tofts PS, du Boulay EP. Towards quantitative measurements of relaxation times and other parameters in the brain. Neuroradiology. 1990;32(5):407–15.

    Article  CAS  Google Scholar 

  14. Cheng HL, Stikov N, Ghugre NR, Wright GA. Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging. 2012;36(4):805–24.

    Article  Google Scholar 

  15. Deoni SC. Quantitative relaxometry of the brain. Top Magn Reson Imaging. 2010;21(2):101–13.

    Article  Google Scholar 

  16. Vaeggemose M, Pham M, Ringgaard S, Tankisi H, Ejskjaer N, Heiland S, Poulsen PL, Andersen H. Diffusion tensor imaging MR neurography for the detection of polyneuropathy in type 1 diabetes. J Magn Reson Imaging. 2017;45(4):1125–34.

    Article  Google Scholar 

  17. Vaeggemose M, Vaeth S, Pham M, Ringgaard S, Jensen UB, Tankisi H, Ejskjaer N, Heiland S, Andersen H. Magnetic resonance neurography and diffusion tensor imaging of the peripheral nerves in patients with Charcot-Marie-Tooth Type 1A. Muscle Nerve. 2017 May 13. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  18. Kronlage M, Bäumer P, Pitarokoili K, Schwarz D, Schwehr V, Godel T, Heiland S, Gold R, Bendszus M, Yoon MS. Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol. 2017;264(7):1434-43.

    Article  Google Scholar 

  19. Breitenseher JB, Kranz G, Hold A, Berzaczy D, Nemec SF, Sycha T, Weber M, Prayer D, Kasprian G. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study. Eur Radiol. 2015;25(7):1911–8.

    Article  Google Scholar 

  20. Milford D, Rosbach N, Bendszus M, Heiland S. Mono-exponential fitting in T2-Relaxometry: relevance of offset and first echo. PLoS One. 2015;10(12):e0145255.

    Article  Google Scholar 

  21. Cartwright MS, Passmore LV, Yoon JS, Brown ME, Caress JB, Walker FO. Cross-sectional area reference values for nerve ultrasonography. Muscle Nerve. 2008;37(5):566–71.

    Article  Google Scholar 

  22. Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic findings of the normal ulnar nerve in adults. Arch Phys Med Rehabil. 2007;88(3):394–6.

    Article  Google Scholar 

  23. Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic reference values for assessing the normal median nerve in adults. J Neuroimaging. 2009;19(1):47–51.

    Article  Google Scholar 

  24. Kerasnoudis A, Pitarokoili K, Behrendt V, Gold R, Yoon MS. Cross sectional area reference values for sonography of peripheral nerves and brachial plexus. Clin Neurophysiol. 2013;124(9):1881–8.

    Article  Google Scholar 

  25. Seok HY, Jang JH, Won SJ, Yoon JS, Park KS, Kim BJ. Cross-sectional area reference values of nerves in the lower extremities using ultrasonography. Muscle Nerve. 2014;50(4):564–70.

    Article  Google Scholar 

  26. Won SJ, Kim BJ, Park KS, Yoon JS, Choi H. Reference values for nerve ultrasonography in the upper extremity. Muscle Nerve. 2013;47(6):864–71.

    Article  Google Scholar 

  27. Saleh HA, El-fark MM, Abdel-Hamid GA. Anatomical variation of sciatic nerve division in the popliteal fossa and its implication in popliteal nerve blockade. Folia Morphol (Warsz). 2009;68(4):256–9.

    CAS  Google Scholar 

  28. Franco CD. Connective tissues associated with peripheral nerves. Reg Anesth Pain Med. 2012;37(4):363–5.

    Article  PubMed  Google Scholar 

  29. Fernández R, Carriel V, Lage S, Garate J, Díez-García J, Ochoa B, Castro B, Alaminos M, Fernández JA. Deciphering the lipid architecture of the rat sciatic nerve using imaging mass spectrometry. ACS Chem Neurosci. 2016;7(5):624–32.

    Article  CAS  Google Scholar 

  30. Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta. 2015;1851(8):999–1005.

    Article  CAS  Google Scholar 

  31. Qrimli M, Ebadi H, Breiner A, Siddiqui H, Alabdali M, Abraham A, Lovblom LE, Perkins BA, Bril V. Reference values for ultrasonograpy of peripheral nerves. Muscle Nerve. 2016;53(4):538–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.B. and S.H. were supported by the German Research Council (DFG, SFB 1118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Kronlage.

Ethics declarations

Conflict of interests

M. Kronlage, V. Schwehr, D. Schwarz, T. Godel, S. Heiland, M. Bendszus and P. Bäumer declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronlage, M., Schwehr, V., Schwarz, D. et al. Magnetic Resonance Neurography. Clin Neuroradiol 29, 19–26 (2019). https://doi.org/10.1007/s00062-017-0633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-017-0633-5

Keywords

Navigation