Skip to main content

Advertisement

Log in

Optimized depiction of thalamic substructures with a combination of T1-MPRAGE and phase: MPRAGE*

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Objective

Deep brain stimulation has received increasing attention in recent years as a treatment option for many neurological diseases. The thalamic nuclei in particular are widely used as targets. The goal of the present work was to evaluate whether the combination of two known MRI techniques can lead to identification of thalamic substructures at 3 T.

Methods

In nine healthy subjects, an optimized 3D magnetization prepared rapid acquisition GRE (MPRAGE) protocol and phase data from a 3D GRE sequence were combined to form a new contrast (MPRAGE*). The depiction of 13 thalamic substructures was rated by two independent raters in the MPRAGE, phase and MPRAGE* image on a five-point scale. Inter-rater reliability was scored with a weighted Cohen’s kappa.

Results

Inter-rater reliability was good, with the average weighted κ = 0.68. No significant difference between the depiction of the thalamic substructures between phase and MPRAGE images could be found. MPRAGE* showed a significantly better depiction of thalamic substructures in comparison to MPRAGE and phase (p < 0.001 for both cases).

Conclusion

The combination of an optimized MPRAGE protocol with phase data to form an MPRAGE* image leads to a further improvement in the depiction of thalamic substructures, which enables the depiction of thalamic nuclei at 3 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen XL, Xiong YY, Xu GL, Liu XF. Deep brain stimulation. Interv Neurol. 2013;1:200–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benabid AL, Pollak P, Hoffmann D, Gao DM, Hommel M, Perret JE, Rougermont J de. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–406.

    Article  CAS  PubMed  Google Scholar 

  3. Weiss D, Mielke C, Wächter T, Bender B, Liscic RM, Scholten M, Naros G, Pewnia C, Gharabaghi A, Krüger R. Long-term outcome of deep brain stimulation in fragile X‑associated tremor/ataxia syndrome. Parkinsonism Relat Disord. 2015;21:310–313.

    Article  PubMed  Google Scholar 

  4. Yamamoto T, Katayama Y, Kobayashi K, Oshima H, Fukaya C, Tsubokawa T. Deep brain stimulation for the treatment of vegetative state. Eur J Neurosci. 2010;32:1145–1151.

    Article  PubMed  Google Scholar 

  5. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Babu Krishnamurthy K, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N, SANTE Study Group. Electrical stimulation of the anterior nucleus of thalamus for treatment of refactory epilepsy. Epilepsia. 2010;51:899–908.

    Article  PubMed  Google Scholar 

  6. Sartorius A, Kiening KL, Kirsch P, Gall CC von, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry. 2010;67:e9–e11.

    Article  PubMed  Google Scholar 

  7. Ackermans L, Duits A, Linden C van der, Tijssen M, Schruers K, Temel Y, Kleijer M, Nederveen P, Bruggeman R, Tromp S, Kranen-Mastenbroek V van, Kingma H, Cath D, Visser-Vandewalle V. Double-blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain. 2011;134:832–844.

    Article  PubMed  Google Scholar 

  8. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T, O’Connor J, Kobylarz EJ, Farris S, Machado A, McCagg C, Plum F, Fins JJ, Rezai AR. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448:600–604.

    Article  CAS  PubMed  Google Scholar 

  9. Deoni SCL, Josseau MJC, Rutt BK, Peters TM. Visualization of thalamic nuclei on high resolution, multi-averaged T1 and T2 maps acquired at 1.5 T. Hum Brain Mapp. 2005;25:353–359.

    Article  PubMed  Google Scholar 

  10. Gringel T, Schulz-Schaeffer W, Elolf E, Frölich A, Dechent P, Helms G. Optimized high-resolution mapping of magnetization transfer (MT) at 3 Tesla for direct visualization of substructures of the human thalamus in clinically feasible measurement time. J Magn Reson Imaging. 2009;29:1285–1292.

    Article  PubMed  Google Scholar 

  11. Bender B, Mänz C, Korn A, Nägele T, Klose U. Optimized 3D Magnetization-Prepared Rapid Acquisition of Gradient Echo: Identification of Thalamus Substructures at 3 T. AJNR Am J Neuroradiol. 2011;32:2110–2115.

    Article  CAS  PubMed  Google Scholar 

  12. Tourdias T, Saranathan M, Levesque IR, Su J, Rutt BK. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7 T. Neuroimage. 2014;84:534–545.

    Article  PubMed  Google Scholar 

  13. Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67:1745–1756.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage. 2013;65:299–314.

    Article  PubMed  Google Scholar 

  15. Lemaire JJ, Sakka L, Ouchchane L, Caire F, Gabrillarques J, Bonny JM. Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging. Neurosurgery. 2010;66(3 Suppl Operative):161–172.

    PubMed  Google Scholar 

  16. Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000;43:682–690.

    Article  CAS  PubMed  Google Scholar 

  17. Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging. 1991;10:154–163.

    Article  CAS  PubMed  Google Scholar 

  18. Nelles M, Koenig R, Kandyba J, Schaller C, Urbach H. Fusion of MRI and CT with subdural grid electrodes. Zentralbl Neurochir. 2004;65:174–179.

    Article  CAS  PubMed  Google Scholar 

  19. Morel A, Magnin M, Jeanmond D. Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol. 1997;387:588–630.

    Article  CAS  PubMed  Google Scholar 

  20. Schaltenbrand G, Wahren W. Atlas for Stereotaxy of the human brain. Stuttgart: Georg Thieme Verlag; 1991.

    Google Scholar 

  21. Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968;70:213–220.

    Article  CAS  PubMed  Google Scholar 

  22. Altman DG. Practical statistics for medical research. Boca Raton: Taylor & Francis; 1990.

    Google Scholar 

  23. Saranathan M, Tourdias T, Bayram E, Pejman G, Rutt KR. Optimization of white-matter-nulled magnetization prepared rapid gradient echo (MP-RAGE) imaging. Magn Reson Med. 2015;73:1786–1794.

    Article  PubMed  Google Scholar 

  24. Haacke E, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33:1–25.

    Article  PubMed  Google Scholar 

  25. Stortmann B, Heidemann RM, Anwander A, Weiss M, Trampel R, Villringer A, Turner R. High-resolution MRI and diffusion-weighted imaging of the human habenula at 7 tesla. J Magn Reson Imaging. 2014;39:1018–1026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wagner.

Ethics declarations

Conflict of interest

B. Bender, S. Wagner and U. Klose state that there are no conflicts of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, B., Wagner, S. & Klose, U. Optimized depiction of thalamic substructures with a combination of T1-MPRAGE and phase: MPRAGE*. Clin Neuroradiol 27, 511–518 (2017). https://doi.org/10.1007/s00062-016-0513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-016-0513-4

Keywords

Navigation