Between-Scanner and Between-Visit Variation in Normal White Matter Apparent Diffusion Coefficient Values in the Setting of a Multi-Center Clinical Trial



To study the between-scanner variation and the between-visit reproducibility of brain apparent diffusion coefficient (ADC) measurements in the setting of a multi-center chemotherapy clinical trial for glioblastoma multiforme.

Methods and Materials

ADC maps of 52 patients at six sites were calculated in-house from diffusion-weighted images obtained by seven individual scanner models of two vendors. The median and coefficient of variation (CV) of normal brain white matter ADC values from a defined region of interest were used to evaluate the differences among scanner models, vendors, magnetic fields, as well as successive visits. All patients participating in this study signed institutional review board approved informed consent. Data acquisition was performed in compliance with all applicable Health Insurance Portability and Accountability Act regulations. The study spanned from August 1, 2006, to January 29, 2008.


For baseline median ADC, no difference was observed between the different scanner models, different vendors, and different magnetic field strength. For baseline ADC CV, a significant difference was found between different scanner models (p = 0.0002). No between-scanner difference was observed in ADC changes between two visits. For between-visit reproducibility, significant difference was seen between the ADC values measured at two successive visits for the whole patient group.


The CVs varied significantly between scanners, presumably due to image noise. Consistent scanner parameter setup can improve reproducibility of the ADC measurements between visits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1

    Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45:169–84.

    Article  PubMed  Google Scholar 

  2. 2

    Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed. 2002;15:456–67.

    Article  PubMed  Google Scholar 

  3. 3

    Bihan D Le, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13(4):534–46.

    Article  PubMed  Google Scholar 

  4. 4

    Bilgili Y, Unal B. Effect of region of interest on interobserver variance in apparent diffusion coefficient measures. Am J Neuroradiol. 2004;25:108–11.

    PubMed  Google Scholar 

  5. 5

    Bonekamp D, Nagae LM, Degaonkar M, Matson M, Abdalla WM, Barker PB, Mori S, Horská A. Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. NeuroImage. 2007;34:733–42.

    Article  PubMed  Google Scholar 

  6. 6

    Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res. 1997;3:1457–66.

    CAS  PubMed  Google Scholar 

  7. 7

    Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst. 2000;92:2029–36.

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Engelter ST, Provenzale JM, Petrella JR, DeLong DM, MacFall JR. The effect of aging on the apparent diffusion coefficient of normal-appearing white matter. AJR Am J Roentgenol. 2000;175:425–30.

    CAS  Article  Google Scholar 

  9. 9

    Farrell JA, Landman BA, Jones CK, Smith SA, Prince JL, van Zijl PC, Mori S. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J Magn Reson Imaging. 2007;26:756–67.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Huisman TA, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE, Il’yasov KA. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol. 2006;16(8):1651–8.

    Article  PubMed  Google Scholar 

  11. 11

    Koizumi K, Masuda K, Komizu M, Ikemoto Y, Yoshimura M, Iguchi H, Hiraga A, Kobayashi A. Report on the ECR2003 (European Congress of Radiology): comparison of apparent diffusion coefficient (ADC) between different MRI scanners. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2003;59(7):825–6. (Japanese).

    PubMed  Google Scholar 

  12. 12

    Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, Wakasa K, Yamada R. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22:1081–8.

    Google Scholar 

  13. 13

    Kubo H, Maeda M, Araki A. Comparison of apparent diffusion coefficients between two-point and multi-point analyses using high-b-value diffusion MR imaging. Jpn Soc Radiol Technol. 2001;57(6):634–8.

    Google Scholar 

  14. 14

    Landman BA, Farrell JA, Jones CK, Smith SA, Prince JL, Mori S. Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. NeuroImage. 2007;36:1123–38.

    Article  PubMed  Google Scholar 

  15. 15

    Melhem ER, Itoh R, Jones L, Barker PB. Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR Am J Neuroradiol. 2000;21:1813–20.

    CAS  PubMed  Google Scholar 

  16. 16

    Moffat BA, Chenevert TL, Meyer CR, McKeever PE, Hall DE, Hoff BA, Johnson TD, Rehemtulla A, Ross BD. The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia. 2006;8(4):259–67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Mardor Y, Pfeffer R, Spiegelmann R, Roth Y, Maier SE, Nissim O, Berger R, Glicksman A, Baram J, Orenstein A, Cohen JS, Tichler T. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol. 2003;21:1094–100.

    Article  PubMed  Google Scholar 

  18. 18

    Neil JJ. Diffusion imaging concepts for clinicians. J Magn Reson Imaging. 2008;27:1–7.

    Article  PubMed  Google Scholar 

  19. 19

    Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637–48.

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Pirzkall A, Ozturk E, Lee MC, Lupo J, Crawford FW, Chuang CF, Nelson SJ. Assessing tumor response in GBM following concurrent radiation and chemotherapy by means of novel MR based imaging methods characterizing metabolic and physiologic changes. In Proceedings of the American Society for Therapeutic Radiology and Oncology 47th Annual Meeting; 2005 (Oct 1: S66–7).

  22. 22

    Ross BD1, Moffat BA, Lawrence TS, Mukherji SK, Gebarski SS, Quint DJ, Johnson TD, Junck L, Robertson PL, Muraszko KM, Dong Q, Meyer CR, Bland PH, McConville P, Geng H, Rehemtulla A, Chenevert TL. Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol Cancer Ther. 2003;2:581–7.

    CAS  PubMed  Google Scholar 

  23. 23

    Sasaki M, Yamada K, Watanabe Y, Matsui M, Ida M, Fujiwara S, Shibata E; Acute Stroke Imaging Standardization Group-Japan (ASIST-Japan) Investigators. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology. 2008;249(2):624–30.

    Article  PubMed  Google Scholar 

  24. 24

    Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Steens SC, Admiraal-Behloul F, Schaap JA, Hoogenraad FG, Wheeler-Kingshott CA, le Cessie S, Tofts PS, van Buchem MA. Reproducibility of brain ADC histograms. Eur Radiol. 2004;14:425–30.

    Article  PubMed  Google Scholar 

  26. 26

    Stejskal E, Tanner J. Spin diffusion measurements: spin echos in the presence of time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    CAS  Article  Google Scholar 

  27. 27

    Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging. 1997;15(7):771–84.

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Pope WB1, Kim HJ, Huo J, Alger J, Brown MS, Gjertson D, Sai V, Young JR, Tekchandani L, Cloughesy T, Mischel PS, Lai A, Nghiemphu P, Rahmanuddin S, Goldin J. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology. 2009 Jul;252(1):182-9.

Download references

Author information



Corresponding author

Correspondence to J. Huo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huo, J., Alger, J., Kim, H. et al. Between-Scanner and Between-Visit Variation in Normal White Matter Apparent Diffusion Coefficient Values in the Setting of a Multi-Center Clinical Trial. Clin Neuroradiol 26, 423–430 (2016).

Download citation


  • ADC
  • Normal white matter
  • Between-scanner variation
  • Between-visit reproducibility