Skip to main content

Advertisement

Log in

Reproducibility of Tract-based and Region-of-Interest DTI Analysis of Long Association Tracts

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Reproducibility of two different methods for quantifying fiber tracts by using a diffusion tensor imaging (DTI) sequence suitable for clinical magnetic resonance imaging (MRI) protocols was evaluated.

Methods

DTI of 15 subjects was used to analyze intra-rater and inter-rater reproducibility. Another 10 subjects underwent MRI twice for assessment of between-scan reliability. Ten long association tracts were defined by fiber tracking using inclusion and exclusion regions of interest (ROIs). Whole-tract analysis and tractography-based core analysis were performed, and the effect of fractional anisotropy (FA 0.15/0.30) and turning angle threshold (27°/60°) on reproducibility was evaluated. Additionally, ROI measurements were performed in the core of the tracts.

Results

For the tract-based methods, intra-rater and inter-rater reliabilities of FA and mean diffusivity (MD) measurements were excellent. Between-scan reproducibility was good or excellent in 127 of 130 of the measurements. There was no systematic difference in the reproducibility of the FA, MD, and volume measurements depending on the FA or turning angle threshold. For the cross-sectional ROI measurements, reliability showed large variation from poor to excellent depending on the tract.

Conclusions

Compared with the commonly used cross-sectional core ROI method, the tract-based analyses seem to be a more robust way to identify and measure white matter tracts of interest, and provide a novel reproducible tool to perform core analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brandstack N, Kurki T, Tenovuo O. Quantitative diffusion tensor tractography of long association tracts in patients with traumatic brain injury without findings in routine MRI. Radiology. 2013;267:231–9.

    Article  PubMed  Google Scholar 

  2. Kanaan RA, Shergill SS, Barker GJ, Catani M, Ng VW, Howard R, McGuire PK, Jones DK. Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Res. 2006;146:73–82.

    Article  PubMed  Google Scholar 

  3. Snook L, Plewes C, Beaulieu C. Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage. 2007;34(1):243–52.

    Article  PubMed  Google Scholar 

  4. Bisdas S, Bohning DE, Bešenski N, Nicholas JS, Rumboldt Z. Reproducibility, interrater agreement, and age-related changes of fractional anisotropy measures at 3T in healthy subjects: effect of the applied b-value. AJNR Am J Neuroradiol. 2008;29:1128–33.

    Article  CAS  PubMed  Google Scholar 

  5. Brander A, Kataja A, Saastamoinen A, Ryymin P, Huhtala H, Öhman J, Soimakallio S, Dastidar P. Diffusion tensor imaging of the brain in a healthy adult population: normative values and measurement reproducibility at 3 T and 1.5 T. Acta Radiol. 2010;7:800–7.

    Article  Google Scholar 

  6. Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Richardson MP, Koepp MJ. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners. Neuroimage. 2010;51:1384–94.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mori S, Crain BJ, Chacko VP, van Zijl PCM. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36:630–44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Malykhin N, Concha L, Seres P, Beaulieu C, Coupland NJ. Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts. Psychiatry Res. 2008;164:132–42.

    Article  PubMed  Google Scholar 

  10. Danielian LE, Iwata NK, Thomasson DM, Floeter MK. Reliability of fiber tracking measurements in diffusion tensor imaging for longitudinal study. Neuroimage. 2010;49:1572–80.

    Article  PubMed  Google Scholar 

  11. Hasan KM, Kamali A, Abid H, Kramer LA, Fletcher JM, Ewing-Cobbs L. Quantification of the spatiotemporal microstructural organization of the human brain association, projection and commissural pathways across the lifespan using diffusion tensor tractography. Brain Struct Funct. 2010;214:361–73.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kurki T, Laalo J, Oksaranta O. Diffusion tensor tractography of the uncinate fasciculus: pitfalls in quantitative analysis due to traumatic volume changes. J Magn Reson Imaging. 2013;38(1):46–53.

    Article  PubMed  Google Scholar 

  13. Yasmin H, Nakata Y, Aoki S, Abe O, Sato N, Nemoto K, Arima K, Furuta N, Uno M, Hirai S, Masutani Y, Ohtomo K. Diffusion abnormalities of the uncinate fasciculus in Alzheimer’s disease: diffusion tensor tract-specific analysis using a new method to measure the core of the tract. Neuroradiology. 2008;50:293–9.

    Article  PubMed  Google Scholar 

  14. Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci. 2008;1142:266–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007;130(10):2508–19.

    Article  PubMed  Google Scholar 

  16. Niogi SN, Mukherjee P, Ghadar J, Johnson C, Kolster RA, Sarkar R, Lee H, Meeker M, Zimmerman RD, Manley GT, McCandliss BD. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29(5):967–73.

    Article  CAS  PubMed  Google Scholar 

  17. Rutgers DR, Toulgoat F, Cazejust J, Fillard P, Lasjaunias P, Ducreux D. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR Am J Neuroradiol. 2008;29:514–9.

    Article  CAS  PubMed  Google Scholar 

  18. Salmond CH, Menon DK, Chatfield DA, Williams GB, Pena A, Sahakian BJ, Pickard JD. Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. Neuroimage. 2006;29:117–24.

    Article  CAS  PubMed  Google Scholar 

  19. Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous MD. A comprehensive reliability assessment of quantitative diffusion tensor tractography. Neuroimage. 2012;60:1127–38.

    Article  PubMed  Google Scholar 

  20. Bonekamp D, Nagae LM, Degaonkar M, Matson M, Abdalla WMA, Barker PB, Mori S, HorskaÌa A. Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. Neuroimage. 2007;34:733–42.

    Article  PubMed  Google Scholar 

  21. Borich MR, Wadden KP, Boyd LA. Establishing the reproducibility of two approaches to quantify white matter tract integrity in stroke. Neuroimage. 2012;59:2393–400.

    Article  PubMed  Google Scholar 

  22. Hong YH, Sung JJ, Kim SM, Park KS, Lee KW, Chang KH, Song IC. Diffusion tensor tractography-based analysis of the pyramidal tract in patients with amyotrophic lateral sclerosis. J Neuroimaging. 2008;18:282–7.

    Article  PubMed  Google Scholar 

  23. Partridge SC, Mukherjee P, Berman JI, Henry RG, Miller SP, Lu Y, Glenn OA, Ferriero DM, Barkovich AJ, Yigneron DB. Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm new-borns. J Magn Reson Imaging. 2005;22:467–74.

    Article  PubMed  Google Scholar 

  24. Wang S, Melhem ER. Amyotrophic lateral sclerosis and primary lateralsclerosis: the role of diffusion tensor imaging and other advanced MR-based techniques as objective upper motor neuron markers. Ann N Y Acad Sci. 2005;1064:61–77.

    Article  PubMed  Google Scholar 

  25. Netsch T, van Muiswinkel A. Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans Med Imaging. 2004;23(7):789–98.

    Article  PubMed  Google Scholar 

  26. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med. 2004;51:103–14.

    Article  CAS  PubMed  Google Scholar 

  27. Shrout P, Fleiss J. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;2:420–8.

    Article  Google Scholar 

  28. Portney L, Watkins M, editors. Foundations of clinical research: applications to practice. 2nd ed. Norwalk: Appleton & Lange; 2000.

    Google Scholar 

  29. Hermoye L, Saint-Martin C, Cosnard G, Lee S-K, Kim J, Nassogne M-C, Menten R, Clapuyt P, Donohue PK, Hua K, Wakana S, Jiang H, van Zijl PCM, Mori S. Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage. 2006;29(2):493–504.

    Article  PubMed  Google Scholar 

  30. Heiervang E, Behrens TE, Mackay CE, Robson MD, Johansen- Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage. 2006;33:867–77.

    Article  CAS  PubMed  Google Scholar 

  31. Alexander AL, Lee JE, Wu YC, Field AS. Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging. Neuroimaging Clin N Am. 2006;16:299–309.

    Article  PubMed  Google Scholar 

  32. Ling J, Merideth F, Caprihan A, Pena A, Teshiba T, Mayer AR. Head Injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies. Hum Brain Mapp. 2011;33(1):50–62.

    Article  PubMed  Google Scholar 

  33. Chung S, Courcot B, Sdika M, Moffat K, Rae C, Henry RG. Bootstrap quantification of cardiac pulsation artifact in DTI. Neuroimage. 2010;49:631–40.

    Article  PubMed  Google Scholar 

  34. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J. Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol. 2006;27(8):1776–81.

    CAS  PubMed  Google Scholar 

  35. Rankin G, Stokes M. Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses. Clin Rehabil. 1998;12(3):187–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Brandstack MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandstack, N., Kurki, T., Laalo, J. et al. Reproducibility of Tract-based and Region-of-Interest DTI Analysis of Long Association Tracts. Clin Neuroradiol 26, 199–208 (2016). https://doi.org/10.1007/s00062-014-0349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-014-0349-8

Keywords

Navigation